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Abstract: The multi-decadal Landsat data record is a unique tool for global land cover and land use 
change analysis. However, the large volume of the Landsat image archive and inconsistent coverage 
of clear-sky observations hamper land cover monitoring at large geographic extent. Here, we 
present a consistently processed and temporally aggregated Landsat Analysis Ready Data produced 
by the Global Land Analysis and Discovery team at the University of Maryland (GLAD ARD) 
suitable for national to global empirical land cover mapping and change detection. The GLAD ARD 
represent a 16-day time-series of tiled Landsat normalized surface reflectance from 1997 to present, 
updated annually, and designed for land cover monitoring at global to local scales. A set of tools for 
multi-temporal data processing and characterization using machine learning provided with GLAD 
ARD serves as an end-to-end solution for Landsat-based natural resource assessment and 
monitoring. The GLAD ARD data and tools have been implemented at the national, regional, and 
global extent for water, forest, and crop mapping. The GLAD ARD data and tools are available at 
the GLAD website for free access. 

Keywords: Landsat; analysis ready data; surface reflectance; land surface phenology; image 
compositing; multi-temporal metrics; land cover; land cover change; time-series analysis; global 
analysis 

 

1. Introduction 

The joint National Aeronautics and Space Administration (NASA) and the United States 
Geological Survey (USGS) Landsat program, which started in the early 1970s, provides the longest 
continuous global archive of the satellite earth observation data. Since the launch of Landsat 4 (1982), 
satellite data have been collected at the same spatial resolution (30m per pixel) and with similar 
spectral bands, enabling a multi-decadal analysis of land cover and land use. All Landsat data have 
been provided at no cost to users since 2008 [1]. Globally consistent Collection 1 data processing [2] 
includes geometric and radiometric correction and observation quality assessment. The free and open 
data policy and consistent imagery format promoted the use of Landsat data and increased the 
variety of data applications [3]. Given the “time machine” capabilities of the Landsat archive, it is 
extensively used for land cover and land use change assessment [4,5]. In recent decades, development 
of high-performance computing and machine learning algorithms has allowed scaling up image 
characterization and change detection approaches to global extent [6–9].  

The methods for globally consistent, multi-temporal land cover characterization and change 
detection were developed in the late 1990s–early 2000s using the low spatial resolution data from 
Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging 
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Spectroradiometer (MODIS) [10–12]. The MODIS Land Science Team developed an extensive suite 
of global land cover, vegetation structure and biophysical products that relied on consistently 
processed imagery [13]. The MODIS data processing chain followed the framework set up by NASA's 
Earth Observing System Data and Information System (EOSDIS) for earth observation instruments 
[14]. MODIS images are consistently processed from source instrument data (Level 0) to 
geometrically and radiometrically calibrated radiance (Level 1) and geophysical variables, such as 
surface reflectance and temperature (Level 2). To ensure spatial and temporal consistency of the data 
inputs for multi-temporal analysis, the data are further aggregated in time (into daily, 8- and 16-day 
composites), and in space (using a global pixel grid and tile system) to the processing Level 3. Level 
3 is the most popular data format for regional and global land cover mapping and change detection 
applications as it allows data analysis without the need for extensive pre-processing. Such a format 
is considered Analysis Ready Data (ARD) as defined by the Committee on Earth Observation 
Satellites (CEOS): “satellite data that have been processed to a minimum set of requirements and 
organized into a form that allows immediate analysis with a minimum of additional user effort and 
interoperability both through time and with other datasets” (http://ceos.org/ard/). 

Landsat imagery is available globally as Level 1 data (geometrically corrected data processed to 
sensor units) from the USGS Earth Resources Observation and Science Center (USGS EROS). The 
Level 2 (surface reflectance) data are available on request. The lack of Landsat Level 3 products 
requires users to develop and implement custom solutions for spatial and temporal data aggregation. 
Several initiatives are aimed to create a consistent ARD data products from the Landsat data archive, 
including Web-enabled Landsat Data (WELD) [15], USGS Landsat ARD [16], and FORCE ARD [17]. 
However, all of the cited products are available either at a limited geographic extent, limited time 
intervals, or provided as tools, not as datasets. There are no globally consistent ARD data for multi-
decadal land cover and land use change analysis. 

The Global Land Analysis and Discovery (GLAD) team at the University of Maryland has 
developed and implemented an automated Landsat data processing system that generates globally 
consistent analysis ready data (GLAD ARD) as inputs for land cover and land use mapping and 
change analysis. The data processing algorithms were developed by Hansen et al. [18] and Potapov 
et al. [19,20] and have been tested at the global extent for forest [6], water [21] and non-vegetated 
surfaces mapping [22]. The GLAD ARD data were implemented as inputs for regional vegetation 
structure mapping [19] and crop type detection [23]. The GLAD ARD represents 16-day time-series 
of globally consistent, tiled Landsat normalized surface reflectance from 1997 to present, updated 
annually, and suitable for operational land cover change applications. The data are provided free of 
charge and are available through a dedicated application programming interface (API) at 
https://glad.umd.edu/ard/home. In addition to the ARD dataset, the GLAD team has developed and 
provided to users a set of tools for time-series data processing, analysis and machine-learning 
characterization. Together, the global GLAD ARD dataset and ARD analysis and characterization 
tools provide an end-to-end solution for national and regional users for no-cost Landsat-based 
natural resource assessment and monitoring. Here, we present the GLAD ARD methodology and 
provide a comprehensive description of the dataset properties.  

2. The GLAD ARD Methodology 

2.1. Landsat Image Processing 

2.1.1. Image Selection 

We employ the archive of Landsat TM, ETM+, and OLI/TIRS data collected from the year 1997 
to present available from the USGS EROS Data Center (https://earthexplorer.usgs.gov/). The Landsat 
Collection 1 Level 1 data are organized into three categories (tiers): Tier 1, Tier 2, and Real-Time [2]. 
Only Tier 1 data meet the highest geometric and radiometric standards, hence only those data are 
employed for ARD processing. We downloaded Tier 1 Landsat imagery for the 8352 World Reference 
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System-2 (WRS) scenes which are located within ice-free land area. Small islands (where no Tier 1 
data exist) and the high Arctic and Antarctic regions are excluded from ARD processing. 

The purpose of the ARD is to map land cover and land use during the growing season, hence 
images affected by seasonal snow cover are excluded from processing. The seasonal snow cover was 
analyzed using the MODIS/Terra Snow Cover Monthly L3 Global product 
(https://nsidc.org/data/MOD10CM/versions/6) and Landsat imagery. We excluded all 16-day 
intervals (see section 2.1.5) that feature seasonal snow cover. The snow-free window duration (Figure 
1 A) ranges from 47 days (three 16-day intervals) in the Arctic to the entire year (51% of all selected 
WRS path/rows).  

Almost 3 million images (2,984,860) from 1 January 1997, to 31 October 2019, were selected and 
processed to create the global ARD. The annual image count (Figure 2) reflects the number of 
operational instruments, data acquisition strategy, and Landsat TM sensor issues precluding correct 
image processing in the years 2001 and 2002 (see Section 2.1.3). Globally, dry tropical and subtropical 
regions feature the highest frequency of observations (Figure 1 B). Humid tropics (where permanent 
cloud cover hampers image geolocation) and high latitude regions (where snow-free season is short) 
feature low frequency of selected observations.   

The Tier 1 data delivered as precision and terrain corrected products (L1TP) with image-to-
image registration Root Mean Square Error (RMSE) of or below 12 meters [2]. Such high geolocation 
quality is suitable for time-series analysis without further adjustments.  

 
Figure 1. (A) Number of snow-free days used to select images for the ARD processing by WRS 
path/row. (B) Number of processed images 1997–2019 by WRS path/row. 

 
Figure 2. Total number of processed images per year and per Landsat sensor from January 1997 to 
October 2019. 

2.1.2. Conversion to Radiometric Quantity 

Due to the differences in spectral band configuration between Landsat sensors, only spectral 
bands with matching wavelengths between TM, ETM+, and OLI/TIRS sensors are processed (Table 
1). For the thermal infrared data, we use the high-gain mode thermal band (band 62) of the ETM+ 
sensor and 10.6–11.19 μm thermal band (band 10) of the TIRS sensor. 

Landsat Collection 1 data contain radiation measurements for reflective visible/infrared bands 
in the form of scaled reflectance (OLI) or radiance (TM/ETM+) recorded as integer digital numbers 
(DNs) [2]. We convert the data into top-of-atmosphere (TOA) reflectance, scaled consistently across 
all Landsat sensors. Spectral reflectance (value range from zero to one) is scaled from 1 to 40,000 and 
recorded as a 16-bit unsigned integer value. 
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For the TM and ETM+ data, we use the TOA conversion methods and coefficients from [24], see 
Equation 1. For the ETM+ sensor, two sets of gain and bias factors are implemented corresponding to 
high or low gain data quantization settings [24]. The correct coefficients are selected by checking the 
per-band “GAIN” metadata parameter. In rare cases, the gain setting changed within the recorded 
scene, which is indicated by the “GAIN_CHANGE” metadata parameter. For such scenes, we process 
only the northern portion of the image and erase data for the rest of the image.  

Table 1. Landsat spectral bands used for ARD processing and corresponding MODIS spectral 
bands. 

Band name 
Wavelength, nm 

Landsat 5 TM Landsat 7 ETM+ Landsat 8 OLI/TIRS MODIS 
Blue 450–520 441–514 452–512 459–479 

Green 520–600 519–601 533–590 545–565 
Red 630–690 631–692 636–673 620–670 

Near-Infrared (NIR) 760–900 772–898 851–879 841–876 
Shortwave Infrared 1 (SWIR1) 1,550–1,750 1,547–1,749 1,566–1,651 1,628–1,652 
Shortwave Infrared 2 (SWIR2) 2,080–2,350 2,064–2,345 2,107–2,294 2,105–2,155 

Thermal 10,410–12,500 10,310–12,360 10,600–11,190 10,780–11,280 

ρ=(π×d2× (G×DN+B))/(ESUN×sin(sunelev×π/180))×40,000 (1) 

ρ – scaled TOA reflectance; π – pi constant; d – Earth-Sun distance; G – gain factor; DN – 
original digital number; B – bias factor; ESUN – mean exoatmospheric solar irradiance; 
sunelev – solar elevation angle. Parameters d, G, B, and ESUN are taken from [24]. 
Parameter sunelev comes from the image metadata. 

The OLI data are provided as TOA reflectance without solar zenith correction. We apply 
Equation 2 to perform the correction for the incoming solar radiation angle. 

ρ=(0.0002×DN+0.1)/(sin(sunelev×π/180)) × 40,000 (2) 

ρ – scaled TOA reflectance; π – pi constant; DN – original digital number; sunelev – solar 
elevation angle from the image metadata. 

The thermal band is converted into brightness temperature and recorded in Kelvin × 100 to 
preserve measurement precision (Equation 3). 

TB=K2/log(K1/(G×DN+B)+1) × 100 (3) 

TB – scaled brightness temperature; K1 and K2 – calibration coefficients; G – gain factor; DN 
– original digital number; B – bias factor. Parameters G, B, K1, and K2 are taken from [24] 
for TM/ETM+ sensors and from the image metadata for the TIRS sensor. 

2.1.3. Observation Quality Assessment 

The per-pixel observation quality assessment is used to highlight observations with a high 
probability of atmospheric contamination by clouds, haze, or cloud shadows. In addition, 
observation quality assessment performs generic snow/ice and water mapping. Observation quality 
assessment is based on the aggregation of the Landsat quality assessment band and GLAD quality 
assessment model output. 

The Landsat Collection 1 data include a Quality Assessment (QA) band based on the globally 
consistent CFMask cloud and cloud shadow detection algorithm [25,26]. The QA band contains the 
cirrus cloud (Landsat 8 only), clouds, cloud shadow, snow/ice, and radiometric saturation flags [27]. 

The GLAD observation quality assessment model developed by our team represents a set of 
regionally adapted decision tree ensembles [28] to map the likelihood of a pixel to represent cloud, 
cloud shadow, heavy haze, and, for clear-sky observations, water or snow/ice. The decision tree 
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models were developed for global Landsat processing [6] and later improved at the regional level 
[19,29]. To improve the cloud and cloud shadow mapping, the models are created separately for TM, 
ETM+, and OLI sensors. Each region (Africa, Australia, South and Central America, South and 
Southeast Asia, boreal and temperate Eurasia and North America) has a separate set of sensor-specific 
models. To build each set of models, we used from 100 to 200 Landsat image scenes which were 
classified into land, water, clouds, cloud shadows, snow/ice, and haze by experts. Each model was 
derived from the training data and applied to a random set of images within the corresponding 
region. We iterated the model by adding new training data until the model performance was 
considered optimal. The GLAD observation quality assessment models are applied to each image 
individually. The input data include Landsat reflective and thermal bands, band ratios, 3 × 3 focal 
means of each band and ratio, and topography variables that include elevation, slope, and aspect 
derived from the Shuttle Radar Topography Mission Digital Elevation Model (SRTM DEM) from 60° 
North to 60° South and ASTER Global Digital Elevation Model (GDEM) in polar regions. The model 
outputs represent likelihoods of assigning a pixel to the cloud, shadow, haze, snow/ice, and water 
classes. 

A comparison of the GLAD and CFMask cloud and cloud shadow detection results in Southeast 
Asia (Table 2) suggests the importance of the model results aggregation. The algorithms have a high 
agreement for cloud detection; however, they provide complementary information for mapping 
cloud shadows. Since our primary goal was to reduce the presence of clouds and shadows in the 
time-series data, we decided to merge the CFMask product with the GLAD algorithm output. From 
the CFMask product, we use high-probability clouds, shadows, and snow/ice flags. From the GLAD 
model outputs, we assign categories based on the likelihoods of thematic classes. This way, cloud, 
shadow, haze, water, snow/ice, and land masks are created for each Landsat image. 

Table 2. Cloud and shadow detection agreement between CFMask and GLAD observation quality 
masks, evaluated using 200 randomly selected Landsat 8 and 7 images in Southeast Asia. The table 
shows the percent of pixels within the final, aggregated, cloud and cloud shadow mask that are: (i) 
detected by both algorithms, (ii) detected only by the GLAD algorithm, and (iii) detected only by the 
CFmask algorithm. 

 Detected by both 
algorithms 

Detected only by the GLAD 
algorithm 

Detected only by the CFMask 
algorithm 

Clouds 85.9 10.1 3.9 
Cloud 

shadows 
41.8 26.0 32.3 

The masks were subsequently aggregated into an integral observation Quality Flag (QF) that 
highlights cloud/shadow contaminated observations, separates topographic shadows from likely 
cloud shadows, and specifies the proximity to clouds and cloud shadows. To derive QF, we 
implement buffering around cloud and shadow pixels, calculate the distance to clouds (along cloud 
shadow projection), and calculate areas affected by topographic shadows using the DEM and sun 
position. The list of criteria for output QFs is presented in Table 3 (values 1–14). 

For the Landsat 5 TM sensor, we applied an additional observation quality check to remove 
sensor errors. Specifically, we excluded observations which have incorrect (usually, abnormally low) 
radiance measurements for selected bands. We assigned a “no data” flag to all pixels that have DN 
values for visible and NIR bands below 7 (empirically derived threshold). For Landsat 5 data from 
the years 2001 and 2002, when most of the sensor anomalies were detected, an image was removed 
from ARD processing if it contained more than 10,000 of such pixels. 

2.1.4. Reflectance Normalization 

Reflectance normalization is a required step that allows extrapolation of the image 
characterization models in time and space by ensuring spectral similarity of the same land-cover 
types. Normalization addresses several factors that affect surface reflectance measurement from 
space, including scattering and attenuation of radiation passing through the atmosphere, and surface 
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anisotropy. We implemented a relative normalization procedure [18–20] that is not computationally 
intensive and does not require synchronously collected or historical data on atmospheric properties 
[30] and land-cover specific anisotropy correction factors [31]. The normalized surface reflectance is 
not equal to surface reflectance derived using atmospheric transfer models and a solution for the 
Bidirectional Reflectance Distribution Function (BRDF). The GLAD ARD data was designed for land 
cover and land cover change mapping and should not be used as a source dataset for the analysis of 
surface reflectance properties. The Landsat image normalization consists of four steps: production of 
the normalization target dataset; selection of pseudo-invariant objects; model parametrization; and 
model application. 

Table 3. Per-pixel observation quality flag (QF). 

QF 
Observation 

quality 
QF assignment criteria 

0 No Data  
1 Land Clear-sky land observation. 
2 Water Clear-sky water observation. 
3 Cloud Cloud detected. 

4 Cloud shadow 
Shadow detected. The pixels located within the projection of a detected cloud. 
Cloud projection defined using solar elevation and azimuth and limited to 9 

km distance from the cloud. 

5 Topographic 
shadow 

Shadow detected. The pixel located outside cloud projections and within 
estimated topographic shadow (estimated using DEM and solar elevation and 

azimuth). 
6 Snow/Ice Snow or ice detected. 
7 Haze Dense semi-transparent clouds/fog detected. 

8 Cloud proximity 

Aggregation (OR) of two rules: 
(i) 1-pixel buffer around detected clouds.  

(ii) Above-zero cloud likelihood (estimated by GLAD cloud detection model) 
within 3-pixel buffer around detected clouds. 

9 Shadow proximity 
Shadow likelihood (estimated by GLAD shadow detection model) above 10% 

for pixels either (i) located within the projection of a detected cloud; OR (ii) 
within 3 pixels of a detected cloud or cloud shadow. 

10 Other shadows 
Shadow detected. The pixel located outside the projection of a detected cloud 

and outside of estimated topographic shadow. 

11 Additional cloud 
proximity over land 

Clear-sky land pixels located closer than 7 pixels of detected clouds  

12 
Additional cloud 
proximity over 

water 
Clear-sky water pixels located closer than 7 pixels of detected clouds  

14 
Additional shadow 
proximity over land Clear-sky land pixels located closer than 7 pixels of detected cloud shadows  

15 
Same as code 1. 

Land Codes 15-17 are identical to codes 1, 11 and 14 except for the presence of water 
in a given 16-day composite. These codes indicate that water was detected in 

this 16-day interval, but was not used for compositing, because a land 
observation was also present within the same 16 days. Such conditions may 

occur within intermittent water bodies, wetlands, rice paddies, etc. These 
codes are created to facilitate the analysis of water dynamics. 

16 
Same as code 11. 
Additional cloud 

proximity over land 

17 
Same as code 14. 

Additional shadow 
proximity over land 

(1) Normalization target 

We derived the target surface reflectance data from twelve years (2000–2011) of MODIS/Terra 
imagery. The MODIS 16-day surface reflectance data [32] for selected spectral bands (see Table 1) 
were collected from the MOD44C product with a spatial resolution of 250m/pixel [33]. The MODIS 
time-series analysis to produce a normalization target included three steps. First, we filtered out all 
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observations with atmospheric contamination and a high off-nadir angle using ancillary data 
included in the MOD44C product. Second, we calculated the Normalized Difference Vegetation 
Index (NDVI) for each observation and ranked all observation dates by the corresponding NDVI 
value. Third, we calculated the average spectral reflectance for all observations with NDVI above the 
75th percentile. The resulting growing season average spectral reflectance was re-scaled to match the 
Landsat TOA reflectance data (to the range from 1 to 40,000) and resampled to the Landsat spatial 
resolution. We did not use the MODIS Nadir BRDF-Adjusted Reflectance (NBAR) product as a 
normalization target for two reasons. First, the NBAR data are only available at 500 m/pixel spatial 
resolution. Second, no high quality NBAR products were available when the GLAD ARD system was 
developed, and we decided to keep the MOD44C-based normalization target for product consistency.  

(2) Pseudo-Invariant Objects 

The mask of pseudo-invariant objects is derived automatically and used to calibrate the per-
scene surface reflectance normalization model. The mask includes clear-sky land observations 
(pixels) that represent the same land cover type and phenology stage in the Landsat image and 
MODIS normalization target composite. Water and snow/ice observations are excluded from the 
mask due to different properties of surface anisotropy. To select the pseudo-invariant pixels, we first 
exclude all observations except clear-sky land using the scene QF. Second, we calculate the absolute 
difference between Landsat and MODIS spectral reflectance for red and shortwave infrared bands. 
Only pixels with differences below 0.1 reflectance value for both spectral bands qualify for the 
pseudo-invariant mask. Bright objects (with red band reflectance above 0.5) are excluded from the 
mask. To avoid reflectance normalization artifacts due to insufficient calibration data, Landsat images 
with less than 10,000 pseudo-invariant pixels are discarded from the processing chain. 

(3) Model Parametrization 

To parametrize the reflectance normalization model, we calculate the bias between Landsat TOA 
reflectance and MODIS surface reflectance for each spectral band within the mask of pseudo-
invariant objects. We collect per-band median bias for each 10 km interval of distance from the 
Landsat ground track. The set of median values is used to parametrize a per-band linear regression 
model using least squares fitting method. For each image and each spectral band, we derive gain (G) 
and bias (B) coefficients to predict the reflectance bias as a function of the distance from the ground 
track (Equation 4). For Landsat scenes with a small land fraction (less than 1/16 of the image), we 
calculate a mean reflectance bias (coefficient G set to 0). Such conditions are usually found in coastal 
regions. For the brightness temperature band, we calculate a single mean bias value for all pseudo-
invariant target pixels within the image. 

Δρ=G×d+B (4) 

Δρ – reflectance bias; G – gain factor; d – distance from the Landsat ground track; B – bias 
factor. 

Figure 3 illustrates the reflectance normalization model calibration for a Landsat scene in the 
Brazilian Amazon. Spectral reflectance correction using the bias adjustment is similar to the dark-
object subtraction method [22]. By using MODIS spectral data, we ensure automatic model 
applicability for various geographic regions and land cover types. Reflectance bias modeling from 
the distance to ground track (related to the off-nadir angle) allows us to implement both bias-
adjustment and surface anisotropy correction as a single, computationally simple, step. 
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Figure 3. Example of calibration of the surface reflectance normalization model for the red spectral 
band of Landsat scene LC82240652019296LGN00. Median reflectance bias (scaled unitless, ρ × 40,000) 
was calculated between Landsat TOA reflectance and MODIS surface reflectance within the mask of 
pseudo-invariant objects for each of the 10,000 meters intervals of distance from the ground track. A 
linear regression model was used to model reflectance bias as a function of distance from the ground 
track. The model coefficients and R2 presented on the image. 

Average global calibration parameters presented in Table 4 illustrate the general properties of 
spectral reflectance correction during the normalization process. The bias coefficient (B) is the highest 
for the visible bands which are most affected by Rayleigh scattering, hence Landsat TOA reflectance 
is higher compared to MODIS surface reflectance. The bias coefficient decreases with wavelength 
increase and is negative for shortwave bands affected by radiation attenuation. The gain coefficient 
(G) has a small positive value, which reflects the generic features of land surface anisotropy that 
affects observations from a narrow field of view, AM overpass satellite system, such as Landsat. The 
gain and bias coefficients have pronounced geographic variation (Figure 4). The bias coefficient, 
especially for visible bands, has high average values in moist climates and low values in dry climates, 
especially over deserts. The surface anisotropy correction mostly affects observations over tall 
vegetation, such as tropical and temperate forests. 

Table 4. Average global coefficients and their standard deviations (SD) for surface reflectance 
normalization model. The model predicts spectral reflectance bias (scaled unitless, ρ × 40,000) as a 
function of distance from the ground track (meters) within the Landsat scene. 

Landsat spectral band 
Coefficient G (gain) Coefficient B (bias) 

mean SD mean  SD 
Blue 0.002 0.003 2849 615 

Green 0.002 0.003 1075 513 
Red 0.002 0.003 675 674 
NIR 0.003 0.005 415 1022 

SWIR1 0.003 0.005 -652 937 
SWIR2 0.002 0.005 −677 1187 

 
Figure 4. Geographic variation of the surface reflectance normalization coefficients. (A) – Red band 
coefficient B (bias). (B) – NIR band coefficient G (gain). Surface reflectance value is scaled unitless, ρ 
× 40,000. 
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(4) Model Application 

After the gain and bias coefficients are derived for each spectral band, we apply the resulting 
models to the entire Landsat image. The normalized surface reflectance is calculated per-pixel using 
Equation 5. To apply the model, we use the raster layer of distances from the ground track (in meters) 
that is calculated for each WRS from the Landsat orbital parameters. 

ρNORM=ρTOA-(G × d + B) (5) 

ρNORM – normalized surface reflectance; ρTOA – TOA reflectance; G – gain factor; d – distance 
from the Landsat ground track; B – bias factor. 

 
Figure 5. Global SWIR-NIR-Red composites of (A) MODIS surface reflectance used as a normalization 
target and (B) Landsat annual average normalized surface reflectance for the year 2018. The average 
reflectance is calculated from all clear-sky observations with band reflectance value between the 25th 
and 75th percentile. Observations affected by seasonal snow cover are excluded. 

GLAD ARD normalized surface reflectance is highly correlated to the MODIS surface reflectance 
data used for normalization model parametrization (Figure 5). To illustrate the GLAD ARD product 
properties, we compared the normalized surface reflectance of red, NIR, and SWIR (1.6 μm) spectral 
bands with MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted 
Reflectance (NBAR) data (MCD43A4). The MODIS NBAR data are collected daily from Terra and 
Aqua MODIS imagery at 500 m spatial resolution (https://lpdaac.usgs.gov/products/mcd43a4v006/). 
The MODIS data were resampled to the Landsat spatial resolution. For comparison, we have 
randomly selected 2,000 points within the conterminous United States. For each point, we extracted 
Landsat ARD spectral data and corresponding 16-day clear-sky averages of daily MCD43A4 product 
for June-August 2018. In total, we collected data for 6,099 samples that contain clear-sky land 
observations for both Landsat and MODIS. Spectral reflectance for a visible (red) and SWIR bands of 
Landsat and MODIS shows a close relationship (Figure 6 A, C). NIR band comparison reveal 
differences between Landsat and MODIS data, with the ARD product consistently underestimating 
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surface reflectance compared to MODIS (Figure 6 B). The mean spectral reflectance difference 
between Landsat ARD and MODIS NBAR data is −0.006 for the red band (95% Confidence Interval 
±0.0008), −0.043 for NIR band (CI ±0.0012), and −0.020 for SWIR band (CI ±0.0012). The differences 
between MODIS-based and Landsat-based surface reflectance measurements are partially due to the 
different spatial resolution of the datasets. We suggest that the strong correspondence between 
MODIS NBAR and normalized Landsat surface reflectance at a large geographic extent confirms the 
utility of the GLAD ARD product for land cover classification. However, the data users should be 
aware of the difference between MODIS NBAR and GLAD ARD surface reflectance products that 
may preclude applications that rely on the precise estimation of surface reflectance.   

 
Figure 6. Comparison of MODIS NBAR surface reflectance (MCD43A4 Version 6) and Landsat GLAD 
ARD normalized surface reflectance products for randomly selected clear-sky land observations for 
June–August 2018 within the conterminous United States (N = 6,099). Spectral bands: (A) – red, (B) – 
NIR, (C) – SWIR (1.6 μm). 

2.2. Temporal Integration and Tiling 

The final step of the GLAD ARD processing is a temporal aggregation of individual Landsat 
images into 16-day composites. The compositing interval was selected corresponding to the Landsat 
orbital cycle and the MODIS Level 3 data products [34]. The use of a 16-day interval reduces the 
requirements for data download, storage, and processing compared to daily data aggregation used 
by the USGS ARD [16] with negligible reduction of usable data, especially outside the USA. The 
ranges of dates for each interval (Table 5) correspond to the MODIS 16-day dataset [33]. The last 
interval consists of 13 days (14 days for a leap year). Using a compositing system that is tied to the 
calendar year simplifies annual data processing and seasonal reflectance comparison. 

Table 5. Start and end days of the year (DOY) for the GLAD ARD 16-day composite intervals. 

Interval ID DOY start DOY end 
1 1 16 
2 17 32 
3 33 48 
4 49 64 
5 65 80 
6 81 96 
7 97 112 
8 113 128 
9 129 144 

10 145 160 
11 161 176 
12 177 192 

 

Interval ID DOY start DOY end 
13 193 208 
14 209 224 
15 225 240 
16 241 256 
17 257 272 
18 273 288 
19 289 304 
20 305 320 
21 321 336 
22 337 352 
23 353 365 (366) 
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The 16-day composites are stored in geographic coordinates and organized in the form of 1 × 1 
degree tiles (see Section 3). To create a 16-day composite, we first select all images within the date 
range that overlap a selected 1 × 1 degree tile. All selected images are projected to geographic 
coordinates using the nearest neighbor resampling method to preserve reflectance values. If more 
than one image overlaps the composite area, we analyze the QF layers of these images. For each pixel 
with overlapping images, we select the best observations following this sequence of QF (best to 
worst): 1-14-11-2-12-6-5-10-9-8-7-4-3 (see QF codes in Table 3). The observation with the best QF is 
selected. If several observations with the same QF are selected, the per-band mean reflectance value 
is retained in the composite. The output composite includes six reflective bands, a brightness 
temperature and a QF band. The QF band value is preserved from the image and modified for values 
1, 11, and 14 to record the presence of water in the time-series (see Table 3, QF values 15–17). 
Effectively, the output 16-day composites represent observation(s) with the highest quality. This does 
not mean, however, that 16-day data represent a spatially complete clear-sky coverage. No-data gaps 
are retained in the composites (marked with QF equal zero), and cloud/shadow contaminated 
observations are retained if no clear-sky observations are available within the corresponding time 
interval. 

3. GLAD ARD Structure 

3.1. Global Tile System 

The GLAD ARD tile system was developed to simplify global data handling. The geographic 
coordinates using the World Geodetic System (WGS84) were selected as the most universal way of 
sharing global data. The coordinate system is defined by EPSG Geodetic Parameter Dataset as 
EPSG:4326 (https://spatialreference.org/ref/epsg/wgs-84/), or using PROJ standard (http://proj.org) as 
+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs. The nearest neighbor resampling may be used 
to re-project the geographic data into the original Universal Transverse Mercator (UTM) Landsat 
pixel grid without distortion, assuming that the output UTM zone is the same as for the source 
Collection 1 Landsat imagery. 

The spatial resolution of the ARD dataset is 0.00025 degree per pixel, which corresponds to 27.83 
m per pixel on the Equator. The pixel size is a compromise between the need to preserve the original 
Landsat data pixel size (30 m/pixel) and to avoid using a repeating decimal number for pixel size 
(which may cause problems with georeference precision).  

The ARD product is stored in 1 × 1 geographic degrees tiles. The tile format facilitates data 
handling and the parallelization of data processing. The exact 1 × 1 degree tile format, however, is 
not optimal for contextual analysis when neighboring pixels are located on different tiles. We 
implemented a partial solution to this issue by creating a tile system with a 2-pixel overlap. The actual 
ARD tile size is 4004 × 4004 pixels, an extent of 1.0005 by 1.0005 degrees. The 2-pixel buffer allows 
implementing contextual analyses using 3 × 3 and 5 × 5 kernels without the need to read data from 
multiple tiles at a time.  

Tile names are derived from the tile center, and refer to the integer value of degrees. E.g., the 
name of a tile with center 17.5E and 52.5N is 017E_52N. The ARD product is only generated for tiles 
that include ice-free land area and where Landsat Tier 1 data exist (Figure 7). The tile names are used 
for folder structure only. The tile system can be downloaded from https://glad.umd.edu/ard/home in 
ESRI Shapefile format. 
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Figure 7. GLAD ARD tile system. (A) – global extent of processed data (tiles shown in blue), 1997–
2019; (B) – example of tile extents and names. The tile system can be downloaded from 
https://glad.umd.edu/ard/home in ESRI Shapefile format. 

3.2. 16-Day Composite Data 

Each data granule contains observations collected during a single 16-day interval. There are 23 
intervals per year (see Table 5 for interval dates). Each interval has a unique numeric identification, 
starting from the first interval of the year 1980. This identification is used as a file name, while the tile 
name is used to identify data folders (Section 3.1). Equation 6 shows how to obtain the interval 
identification number for a selected year and season.   

ID = (Year-1980)×23+Interval (6) 

ID – interval identification number (file name), Year – selected year (1980 and later), 
Interval – selected annual 16-day interval (1–23). 

The 16-day data for a tile are stored as 8-band, 16-bit unsigned, LZW-compressed GeoTIFF files. 
The list of image bands is provided in Table 6 (see Table 1 for Landsat band abbreviations and 
wavelengths). The image band 8 consists of an observation quality flag (QF) that reflects the quality 
of observation used to create the composite. The QF (Table 3) is inherited from the Landsat image 
which is selected for the 16-day composite. QF values 1, 2 and 15 indicate clear-sky observations. QF 
values 11–14 and 16–17 are considered clear-sky data with an indication of cloud/shadow proximity. 
QF values 5 and 6 indicate seasonal data quality issues (topographic shadows and snow cover). These 
observations may be removed from data processing if the number of clear-sky observations is 
sufficient. QF values 3, 4, and 7–10 are considered contaminated by clouds and shadows and are 
usually excluded from data processing. 

Table 6. 16-day composite image layers. 

Image 
band 

Image data Units, data format 

1 Blue band 

Normalized surface reflectance scaled to the range from 1 to 
40,000, UInt16  

2 Green band 
3 Red band 
4 NIR band 
5 SWIR1 band 
6 SWIR2 band 

7 
Normalized brightness 

temperature  
K × 100, UInt16 

8 Observation quality flag (QF) QF code, UInt16 

4. Multi-Temporal Metrics 

Despite the global radiometric consistency of the 16-day GLAD ARD product, direct application 
of this dataset as input to a land cover characterization model is hampered by the irregular frequency 



Remote Sens. 2020, 12, 426 13 of 22 

 

of clear-sky observation. The availability of clear-sky observations is a function of the Landsat orbital 
constellation, data acquisition strategy, and cloud cover. As a result, annual 16-day time-series for 
the same area may have dramatically different numbers of clear-sky observations between seasons 
and years [19]. While 16-day time-series data contain sufficient information to identify land cover 
types and land cover dynamics (Figure 8), the inconsistency of observation frequency may not allow 
calibration of a regional mapping model using solely ARD as source data. 

The multi-temporal metrics method is a time-series data transformation that improves spatial 
and temporal consistency, simplifies phenological analysis, and facilitates land cover mapping and 
change detection at large geographic extents. The metrics approach helps to overcome the 
inconsistency of clear-sky data availability that is typical for sensors with low observation frequency, 
such as Landsat. The metrics method was developed in the mid-1980s to extract phenological features 
from the AVHRR-based NDVI time-series [35,36]. At the same time, the idea of using vegetation 
index time-series to extract spectral reflectance corresponding to a certain phenological stage was 
proposed by Holben [37]. Later, both approaches were merged by researchers from the Laboratory 
for Global Remote Sensing Studies at the University of Maryland [38]. In their work, metrics were 
calculated by extracting spectral information for specific phenological stages defined by the NDVI 
annual dynamics. The multi-temporal metrics were widely used for forest monitoring at continental 
and global scales using MODIS [39] and Landsat data [6,19,20,40]. 

 
Figure 8. Examples of NDVI temporal profiles extracted from the 2010–2018 GLAD ARD clear-sky 
land observation time-series. Land cover types: (A) – Evergreen humid tropical forest, Democratic 
Republic of the Congo (Longitude: 25.63254, Latitude: 0.42928); (B) – Desert, Niger (11.37659, 
18.22881); (C) – Rainfed agriculture, Brazil (−46.00316, −11.71092). Land cover change dynamics: (D) 
– Boreal forest harvesting, Canada (−80.50295, 47.79808); (E) – Shifting cultivation, Myanmar 
(95.52212, 26.13662); (F) – Pine plantation management, USA (−88.61679, 32.29155). 

ARD-based multi-temporal metrics represent a set of statistics extracted from a 16-day 
observation time-series. The metric types and statistical algorithms may vary depending on the 
mapping objective. Here, we present algorithms for the two most common objectives: annual land 
cover mapping and detection of land cover changes between two consecutive years. To benefit these 
objectives, we use GLAD ARD data to create two independent sets of multi-temporal metrics: annual 
phenological metrics and annual change detection metrics. The metric processing tools and 
supervised classification tools that allow metrics characterization are available at 
https://glad.umd.edu/ard/home. 

4.1. Annual Phenological Metrics 
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The annual phenological metrics serve as source data for land cover, land use, and vegetation 
structure mapping models. Metrics represent a set of statistics extracted from the normalized surface 
reflectance time-series within a corresponding calendar year (January 1 – December 31). However, 
limited and inconsistent data availability in regions with a short snow-free season or frequent cloud 
cover may preclude consistent phenology characterization by annual observation time-series. To fill 
long gaps in observation time-series we use the data from the three previous years. Optionally, the 
gap-filling algorithm can be disabled to create metrics solely from data collected during the 
corresponding year. The process of phenological metrics processing includes two stages: (1) selecting 
clear-sky observations and filling gaps in the observation time-series; and (2) extracting reflectance 
distribution statistics from the time-series of selected observations.  

First, we compile a gap-filled time-series of annual observations with the lowest atmospheric 
contamination (Figure 9). The per-pixel criterion for 16-day data selection is defined based on the 
distribution of QFs within the four years of data. If clear-sky land or water observations are present 
in the time-series data, only those are used for subsequent analysis. If no such observations are found, 
the software changes the observation quality threshold for data inclusion, first allowing observations 
with proximity to clouds and shadows, and then allowing all available observations. To create an 
annual gap-filled observation time-series for metric extraction, we first analyze the duration of the 
gaps between existing 16-day clear-sky observations of the corresponding year (Year i). If a gap 
exceeds two months (four 16-day intervals), we search for the clear-sky observations in the previous 
years within the gap date range, starting with Year i-1 and until the Year i-3. When clear-sky 
observations are found, they are added to the gap-filled time-series data, and the gap analysis is 
performed again until all gaps longer than two months are filled or no available data are found within 
the four-year interval. 

 
Figure 9. Schematic representation of the gap-filling algorithm for phenological metrics. Year i stands 
for the corresponding year, and Years i-1 – i-3 for preceding years. Black squares are clear-sky 
observations and gray squares are 16-day intervals with no data. The blue squares in the gap-filled 
time-series are clear-sky observations filled from the Years i-1 – i-3 (highlighted by blue outlines) 
within the data gaps exceeding 2 months (four 16-day intervals). 

After compilation of the annual gap-filled observation time-series, we compute selected 
normalized band ratios, or indices, for each selected observation using Equation 7. A spectral 
variability vegetation index (SVVI, [41]) is also calculated using the standard deviation of spectral 
reflectance values for each pixel (Equation 8).  

NRAB = (ρA-ρB)/(ρA+ρB) ×10,000+10,000 (7) 

NRAB – Normalized ratio between bands A and B; ρA, ρB – normalized surface reflectance of 
bands A and B.  

SVVI=σ(ρBlue, ρGreen, ρRed, ρNIR, ρSWIR1, ρSWIR2)-σ(ρNIR, ρSWIR1, ρSWIR2)+10,000 (8) 

SVVI – Spectral variability vegetation index; σ – standard deviation; ρBlue, etc. – normalized 
surface reflectance. 
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Multi-temporal metrics are generated from the time-series using two observation date ranking 
approaches (Figure 10). First, we rank all observations by each spectral band reflectance or index 
value individually. From obtained ranks, we select the highest/lowest, second to the highest/lowest, 
and median reflectance values. Also, we calculate averages for all observations between selected 
ranks (see Figure 10 for the list of average values). Second, we rank observation dates by 
corresponding values of (i) NDVI, (ii) SVVI, and (iii) brightness temperature. From these observation 
date ranks, we extract values corresponding to the highest/lowest, and second to highest/lowest ranks 
for each of the reflective bands, and calculate average reflectance values between selected ranks. In 
addition to spectral metrics, the software produces a set of auxiliary layers including the number of 
clear-sky 16-day composites, observation quality, and water presence per pixel. 

 
Figure 10. Phenological metric types and naming convention (metric names shown in square 
brackets). The first set of metrics represents statistics calculated from 16-day observation time-series 
ranked by the spectral reflectance or index value. The ranking performed independently for each 
spectral band or index. The second set of metrics represents statistics calculated from 16-day 
observation time-series ranked by the value of corresponding variable (NDVI, SVVI, and brightness 
temperature). Q1, Q2, and Q3 stand for 1st, 2nd, and 3rd quartiles. * Amplitudes are calculated in 
memory during classification model application and are not written to the disk. 

The metrics are stored as single-band 16-bit unsigned GeoTIFF files using the same tile system 
as the ARD (see Section 3.1). The metrics set for each tile is stored in a separate folder. The metric 
naming convention is the following (see Figure 10 for bands, indices and statistics names): 

YYYY_B_S_C.tif 
YYYY – Corresponding year. 
B – Spectral band or index. 
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S – Statistic extracted from the observation time-series. 
C – Corresponding band or index used for observation ranking (only for metrics extracted from ranks defined 

by a corresponding value). 
Example: 
2018_blue_max_RN.tif - The metric represents the value of the normalized surface reflectance of the 

Landsat blue band for the 16-day interval that has the highest red/NIR normalized ratio (also known as 
NDVI) value during the year 2018. 

Not all of the metrics are recorded to disk. Specifically, the amplitude metrics are calculated in 
memory during the classification procedure. To include spatial context to image classification, the 
focal mean for each of the metric using 3 × 3 kernel is calculated during the classification routine.  

 
Figure 11. Example of image composites of different 2018 annual phenological metrics for Mekong 
Delta, Vietnam. (A) SWIR1-NIR-Red Q1-Q3 interquartile average reflectance composite, observations 
for each band ranked individually by their reflectance value; (B) NIR-SWIR1-SWIR2 Q3-max average 
reflectance composite, observations ranked by the NDVI value; (C) SWIR1-NIR-Red reflectance 
amplitude (difference between annual minimum and maximum) composite; (D) Red/NIR (NDVI) – 
Green/Red – NIR/SWIR2 second-to-maximum normalized ratios values, observations ranked 
individually by each ratio value. 

The large number of multi-temporal metrics (816 metrics in the phenological metrics set 
described above) is warranted by the large variety of land cover classes that may be mapped using 
these data. Different metrics and their combination highlight specific features of the surface 
reflectance and land surface phenology that are required for mapping different land cover types. The 
simple interquartile reflectance average (average of all values between 1st and 3rd quartiles, each 
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spectral band ranked independently by its value) may serve as a generic clear-sky image composite 
for a specific year (Figure 11 A). If the observations are ranked by the corresponding NDVI value, 
and the average is calculated from the top ranks, the composite will represent surface reflectance 
during the peak of the growing season (Figure 11 B). Metrics extracted from the NDVI and brightness 
temperature ranks are required for agriculture mapping [23,42,43]. The spectral reflectance 
amplitudes highlight the land surface phenology and simplify identification of evergreen trees, 
permanent water features, and crop rotation characterization (Figure 11 C). Using normalized ratios 
and their phenology facilitates mapping of different land cover types and simplifies visual 
assessment (Figure 11 D). 

4.2. Annual Change Detection Metrics 

The annual change detection metrics are designed to facilitate land cover change mapping 
between the corresponding and previous years while reducing false change detections due to 
reflectance fluctuations and inconsistent clear-sky observations availability. Change detection 
metrics describes the surface reflectance within the corresponding and preceding years, spectral 
reflectance differences between these years, and surface reflectance trend within the time-series. The 
process of change detection metrics construction includes three stages: (1) selecting clear-sky 
observations; (2) constructing data time-series, and (3) extracting reflectance and reflectance change 
distribution statistics from the time-series.  

To build a set of change detection metrics, we utilize four years of data (one corresponding and 
three preceding), and select observations with the best available quality. The metric set can be 
generated with less than four years of data, but at least two consecutive years of data are required. 
Only observations with the lowest atmospheric contamination are used for metrics extraction. The 
per-pixel criterion for 16-day data selection is defined automatically based on the distribution of 
observation quality flags within the four years of data, similar to the phenological metrics algorithm. 
All other observations are discarded from further processing. 

 
Figure 12. Schematic representation of the time-series data compilation for the change detection 
metrics. Green and black squares represent 16-day intervals with clear-sky observations, gray squares 
– 16-day intervals with no clear-sky observations. C stands for the corresponding year time-series 
(Year i); P for preceding year time-series (average of Years i-1, i-2, and i-3, selected observations 
highlighted in blue). Time-series I is compiled from time-series P and C. D stands for difference 
between 16-day observations of C and P time-series (intervals with difference values highlighted in 
red). 

To facilitate extraction of the change detection data, we construct four different data time-series 
(time-series C, P, I, and D, see Figure 12). Time-series C comprised from the clear-sky observations of 
the corresponding year (Year i). To create a historical baseline for change detection (time-series P), we 
collect an average reflectance from the three preceding years (Year i-1 – Year i-3) only for those 16-day 
intervals that have clear-sky observations in the time-series C. If no observations are found for a 
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certain 16-day interval in historic data, we use clear-sky data from the closest observation before/after 
the missing 16-day composite interval. For each observation of time-series C and P, in addition to 
normalized reflectance, we calculate normalized ratios from selected bands (Equation 7). Time-series 
P and C are further aggregated into a single, 46-interval, time-series to calculate trend analysis metrics 
(time-series I). Finally, the per-16-day interval difference for all spectral band and index values 
between time-series P and C comprise the time-series D.  

To extract statistics, we use three different approaches (Figure 13): 
 For the time-series C and P, we extract two independent sets of metrics that reflect annual phenology. 

Observations in each time-series are ranked by (a) spectral band or index value, and (b) 
corresponding NDVI and brightness temperature values. Similar to phenological metrics, we record 
selected ranks and average between ranks for each spectral variable. 

 The time-series I is used to analyze unidirectional trend of spectral reflectance within a two-years 
interval. We use least squares method to fit linear regression model that predicts spectral reflectance 
or index value from the observation date (date range is from 1 to 46) for clear-sky observations. We 
record the slope of linear regression as a metric value. In addition, we calculate and record standard 
deviation of spectral variable within the time-series I. 

 The time-series D consists of per-16-day interval spectral reflectance or index differences. We rank 
difference values, and extract a set of statistics (selected ranks and averages) from these ranking. 

 
Figure 13. Change detection metric types and naming convention (abbreviations used for file names 
shown in square brackets). Annual statistics are collected independently for the corresponding and 
preceding years. Interval statistics are collected from a time-series of both years (46 observations). 
Per-16-day interval difference statistics are collected from the time-series of per-interval difference 
values. * Differences between metrics are calculated during the change detection model application 
and not written to disk. 
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Similar to the phenological metrics, each metric is stored as a single-band 16-bit unsigned 
GeoTIFF file, and metrics are organized in folders named with corresponding tile names. The generic 
naming convention is the following: 

YYYY_B_T_S_C.tif 
Where: 
YYYY – corresponding year. 
B – Spectral band or index. 
T – Time-series from which the statistics were extracted. Index [c] represents the corresponding year (time-

series C), [p] stands for the preceding year (time-series P) and [dif] stands for a time-series of per-16-
day interval differences (time-series D). Slope of linear regression and standard deviation metrics, which 
are calculated from the entire time-series, do not have this name section. 

S – Extracted statistic. 
C – Corresponding band or index used for ranking (only for metrics extracted from ranks defined by a 

corresponding value). 
Example: 
2018_blue_c_max_RN.tif - The metric represents the value of the normalized surface reflectance of the 

Landsat blue band for the 16-day interval that has the highest red/NIR normalized ratio (also known as 
NDVI) value during the year 2018. 

 
Figure 14. Composites of selected 2018 annual change detection metrics for Northern Laos (centered 
at 101.5950, 20.5473). (A) – SWIR1-NIR-Red Q1-Q3 interquartile average band reflectance composite 
for previous year (compiled from 2015–2017 data); (B) – SWIR1-NIR-Red Q1-Q3 interquartile average 
band reflectance composite for the year 2018; (C) – Interquartile average SWIR1 band reflectance 
difference between corresponding and previous years (red: corresponding year; blue, green – 
previous year); (D) – Composite of metrics based on per-16-day difference (red: maximum SWIR2 
band difference; green and blue: average NIR/SWIR2 normalized ratio difference). 

The high variability of metrics allows using the generic change detection metric set for the wide 
spectrum of land cover monitoring applications. Annual metrics for the corresponding and preceding 
years (Figure 14 A, B) are compared by calculating differences during change detection model 
parametrization to indicate land cover change. The inter-annual spectral reflectance difference can be 
visualized by combining the same statistics extracted from different years (Figure 14 C). Metrics that 
represent the slope of linear regression, and statistics extracted from per-16-day differences (Figure 
14 D) provide important information on land cover change [19,20,29].  

Annual change detection metrics serve the operational update of the global forest cover change 
product that is developed by the GLAD team for Global Forest Watch initiative (www. 
globalforestwatch.org). The data users should be aware that while using four years of data to create 
a change detection metrics set improves the classification quality, the metric set is sensitive to changes 
that happened not only between the corresponding and preceding years, but also between the 
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corresponding year and the years i-2 and i-3. The “last annual observation” metric may be used to 
exclude changes that happened earlier. Alternatively, a change detection algorithm can be applied 
annually to eliminate redundant change detections.  

5. Known Issues and Limitations 

The GLAD team is constantly updating the ARD product to ensure data completeness and 
quality. Here, we list known issues that users should consider when using the product. Some of these 
issues will be addressed in future revisions of the GLAD ARD. 
 The current version of the GLAD ARD product is not suitable for real-time land cover monitoring. 

The ARD product rely on Tier 1 data which currently features up to 26 days processing delay by 
USGS (https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1). A 16-day interval 
data are processed only after all daily data are available as Tier 1. Thus, the ARD update usually 
features a 1-month delay. 

 Landsat 5 images for 2001–2002 were filtered for possible sensor artifacts during ARD processing. 
However, after examining images recently processed to Collection 1 standard we suggested that 
some of these artifacts were removed by the data provider. A re-processing of the year 2001 and 
2002 ARD will be scheduled to include corrected L5 data. 

 Images crossing the 180° meridian were not processed due to technical difficulties. This issue was 
not addressed yet due to low demand for the data in these regions. The images will be processed 
and the corresponding 16-day composites will be updated later. 

 Due to low sun azimuth and similarity between snow cover and clouds during winter season in 
temperate and boreal climates, the GLAD Landsat ARD algorithm is not suitable for winter time 
image processing above 30N and below 45S Latitude. We are not processing images during times 
affected by seasonal snow cover so the resulting 16-day intervals have no data. Some of the images 
(and resulting 16-day composites) may still include snow-covered observations. We suggest further 
filtering such observations using the “snow/ice” observation quality flag or by removing certain 
16-day intervals from data processing. 

 The surface reflectance normalization is not equal to a physically-based atmospheric and surface 
anisotropy correction. While the comparison of ARD data with MODIS-based surface reflectance 
and successful ARD applications for global land cover mapping suggest that the product has 
sufficient quality for intended use, the ARD data may not be suitable for precise analysis of land 
surface reflectance. 

 Users should be aware that the image normalization method is not designed to deal with specular 
reflectance and thus introduces bias over the water surfaces. We do not recommend using the ARD 
product for water quality assessment or any other hydrology applications beyond surface water 
extent mapping. 
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