National Forest Assessment and Monitoring Using the Satellite Data Archives

& DISCOVERY Global Land Analysis and Discovery Lab University of Maryland, College Park

Forests of Madagascar

• Forest use provides substantial contribution to the national GDP. Agriculture and forestry combined

accounting for 27% of GDP. Fuelwood is the major source of energy in the country.

- Trees outside forests plays important role in the country's total tree cover. TOF makes up to 54% of the total area covered with woody vegetation in 2015.
- Forests are heavily degraded and their area is shrinking. The forest area has declined dramatically in the last decades.

	1990	2000	2005	2010	2015
Forest area (1,000 ha)	13,692	13,023	12,838	12,553	12,473

FAO FRA 2015

National Tree Cover (Forest and TOF) Area

Sources of national data on tree cover area in Madagascar

- 1970s forest cover from Landsat MSS (Faramalala, 1988; Mayaux, 2000; Harper et al., 2007).
- Forest area c. 1990 and c. 2000 (Harper et al., 2007)
- Forest area 2005 (CI, 2005).
- Forest area 2010 (ONE, FTM, MNP).

National Forest Inventory and Land Management

- Quantification and monitoring of forest resources.
- Land cadaster and management.
- Assessment of forest ecosystem services, habitat mapping, and conservation status assessment.
- Forest restoration projects management.

International Reporting FAO FRA National reports

UNFCCC GHG Emissions Reporting, NFMS for REDD+ activities

- Measurement of the reference emission and deforestation levels.
- Operational monitoring of forest cover change for emissions reporting.

GLAD

Tree Cover Area and CO₂ Emissions Reporting

• Forests act as both sink and source for CO_2 emission. In Madagascar, LULUCF serves as a major sink of the CO_2 that outweigh national emissions. In the year 2000 Madagascar remains a carbon sink with a net emission ($\Sigma_{Emissions} + \Sigma_{Absorptions}$) of - 231,821 Gg CO_2

Data from the: Madagascar. Second national communication to UNFCCC. 2010

- To calculate changes (emission or removal) in the forest and other woody biomass stocks, **total** plantation area, forest, and trees outside the forest should be considered.
- Emissions reporting should be provided **periodically and consistently** (biannual reporting).
- **Uncertainty measurement** is required for all estimations.

Tree Cover Area and CO₂ Emissions Reporting

• Basic IPCC equation to calculate carbon emissions from LC change (IPCC, 2006, vol.1, ch.1.2):

*Emissions = Activity Data * Emission Factor*

• Using emission factors specific for forest types may improve the GHG emission accuracy. The equation for multiple forest types (strata) is:

$E = \sum AD_i * EFi$ i - stratum - specific data

- Remotely sensed data enable mapping and monitoring of forest cover and change over large areas (**Activity Data**) at regular intervals, providing information on where and how changes are taking place at annual or even finer time scales. Long-term satellite data archives are the only datasets available for estimating historical activity data.
- The most promising and robust ways to map above ground carbon stock across landscapes (**Emission Factor**) rely on the synergistic use of field measurements and remote sensing data.

Tree Cover Area: National Monitoring

Objective

Providing timely spatial information on tree cover area and change

Requirements

Monitoring institution:

- Free data. Low-cost, easy to implement data processing and analysis methods.
- Fast data processing to allow timely updates.
- Complete ownership and replicability of results.

National reporting:

- Reporting format and timing is aligned with national forest policies and suitable to quantify their effects.
- Spatial and temporal consistency at national scale.
- Known uncertainty. Accuracy is suitable for MRV.

International reporting:

- Transparency and replicability of methods and data.
- Consistency between countries.
- Known uncertainty estimated using good practices.

Cloud-free Landsat data time-series

Spatial and temporally consistent Landsat surface reflectance data time-series provides the basis of annual land cover monitoring. Landsat data archive is the only data source that allowing global historical tree cover change monitoring.

Global maps of tree cover, it loss and gain, are readily available. The UMD/GLAD maps are produced on a consistent basis and are updated annually. These maps, however, **may have limitations** in the regions with heterogeneous landscape and small-scale tree cover dynamics.

Wrong way

Global forest extent and change products provides spatially consistent, wall-to-wall data... However:

- All maps derived from remotely sensed data contain errors due to data limitation, classification/change detection algorithm limitation, analyst errors and bias, etc.
- Errors on the global overview maps usually introduce bias in area estimations. Most of the overview maps provide "conservative" estimates of rare classes, i.e. they underestimate forest change.
- The global map errors may be spatially biased (e.g. due to different characterization model sensitivity within different environments). Its quality may not be suitable in a particular region.
- The uncertainty of classification may not be estimated from the map alone.

Good practice

Spatially exhaustive (wall-to-wall) maps

- Provide information on spatial allocation of forest cover and change.
- Allow sampling design/area estimation with improved efficiently and precision.
- Global maps may have limitations and should be substituted with regional/national maps when possible.
- Sample-based assessment (reference sample data)
- Provides highest quality determination of the forest cover and change conditions per sample unit
 - Serves as reference data for map **accuracy assessment**.
 - Allows **unbiased area estimation** with known **uncertainty**.

Sampling Design

Random sampling

Stratified sampling

Broich et al. (2009)

Sampling Design

Wall-to-wall forest cover and change products may be used to create a **stratified sampling design** which is much **more efficient** that random or regular sampling:

- Lower uncertainty of sample-based estimate;
- Smaller number of samples needed;
- Reduce requirement for commercial high spatial resolution data.

GLAD

NFMS

GLAD Tree Cover Monitoring Approach

Global consistently processed annual Landsat data

OR

Global tree cover and tree cover change maps (strata) National tree cover and tree cover change maps (strata)

Stratified sampling design

- Sample-based estimates of tree cover area and change.
- Tree cover and change by regions, forest types, or AGB strata.
- Change by year, disturbance type, gross and net change.
- Accuracy of the national wall-to-wall maps.

*All estimates with known uncertainty

National reporting and management.

Support for NFI (plot location, extrapolation of field data). International reporting (FAO FRA, REDD+, IPCC/UNFCCC).

The GLAD system objective is to provide **timely spatially consistent information on national tree cover area and change**.

The GLAD system benefits:

- **Globally spatially and temporally consistent analysis-ready data** based on Landsat (+Sentinel-2) data archive (annually updated, distributed free-of-charge).
- Efficient data characterization methods and tools (for mapping and sampling) using purposely developed software.
- **Timely update** of national products (i.e. at annual intervals). Availability of the near-real-time data (weekly forest change alerts product).
- Outputs are suitable for the **national and international reporting.** All estimates includes "good practice" uncertainty estimation.
- In-country data characterization that ensure complete product ownership and replicability.
- Harmonization of input data and products between agencies and regions.

GLAD Landsat Level 3 Data Products

Landsat source L1T data (Collection 1 data)

GLAD Landsat data composites and metrics

GLAD Landsat Level 3 Data Products

Spatially and temporally consistent inputs for...

Wall-to-wall mapping

Global LC/LCC mapping

National mapping and change detection

Sample-based analysis

GLAD spectrally, spatially, and temporally consistent wall-to-wall national data

Circa 2000 image composite

CLASIite scene-based national data compilation

Circa 2011 image composite

1

Landsat data composites and metrics

MINAM

4

Sample block analysis using Landsat and RapidEye data

Two-stage cluster sampling design to reduce high spatial resolution data cost

Forest cover loss within primary humid tropical forests, 2000-2011

Stratified sampling design (sampling grid of 12x12 km blocks, 30 blocks sampled)

Total number of 12x12 km blocks within humid tropical forests: 5532. Sampled blocks: 30 (0.5%). Forest loss area estimated with SE of +/- 6.6%. Mapped loss area is 15% lower than the sample-based area.

Forest cover change for Peru by MINAM, baseline 2000-2011, annual update 2013-2016

GLAD

2002

79,832

83.99

72,874 93.14 147 624 74 502

5 656 91

TOTAL

2007 2008 2009 2010 2011 2012 2013 2014

105,7

152,161

2014

100.0

ha ha

149,4

136,205 123,563

ha

1,819,384

69,179,377

National reports

AEPORTE DE LA PERDIDA DE LOS BOSQUES HÚMEDOS AMAZÓNICOS AL 2011-2013	Reporte Preliminar de
Garanger m	la Pérdida de los Bosques Húmedos Amazónicos para el año 2014
S MARYLAND	
MOORE - KIW	
SilvaCarbon O	Elaborado por: Proyecto REDO-MINAM Christian Vargas Goszales

National forest data portal (include forest alerts)

Software use and image analysis training

Joined scientific publications

IN ACCESS		
Publishing	-	

inviron. Res. Lett. 9 (2014) 124012 (13pp)

OPE

Environmental Research Letters doi:10.1088/1748-9326/9/12/12/124012

National satellite-based humid tropical forest change assessment in Peru in support of REDD+ implementation

P V Potapov¹, J Dempewolf¹, Y Talero¹, M C Hansen¹, S V Stehman², C Vargas³, E J Rojas³, D Castillo⁴, E Mendoza⁵, A Calderón³, R Giudice³, N Malaga³ and B R Zutta³

MAPEO DE PÉRDIDA DE BOSQUES HÚMEDOS AMAZÓNICOS DEL PERÚ ENTRE LOS AÑOS 2000 AL 2011 UTILIZANDO METRICAS MULTITEMPORALES DERIVADAS DE DATOS LANDSAT ETM+

C. Vargas Gonzáles^a, E. Rojas Baez^a, D. Castillo Soto^b, V. Espinoza Mendoza^b, A. Calderón-Urquizo Carbonel^b, R. Giudice Granados^a, N. Malaga Durán^a, B. Zutta Salazar^a, P. Potapov^c, M. Hansen^c, J. Dempewolf^c, E. Mendoza Rojas^d

2015

Tsaratanana

Sampling design to quantify tree cover change in Madagascar, 2000-2015

Sampling design to quantify tree cover change in Madagascar, 2000-2015

	area,	count,		Total	Training
Stratum	ha	30x30m pixels	% total	samples	goal
No loss / no trees	25,141,547	348008206	43	200	50
No loss / tree cover	23,815,964	327272139	40	800	150
Loss 2001-2015	2,658,505	36480651	4	1000	150
Buffer around loss	7,528,648	103251036	13	1000	150
Total	59,144,663	815012032		3000	500

Tree cover 2016 Gross tree cover loss, 2000-2016 60-m proximity of GTCL

Sampling design to quantify tree cover change in Madagascar, 2000-2015

	area,	count,		Total	Training
Stratum	ha	30x30m pixels	% total	samples	goal
No loss / no trees	25,141,547	348008206	43	200	50
No loss / tree cover	23,815,964	327272139	40	800	150
Loss 2001-2015	2,658,505	36480651	4	1000	150
Buffer around loss	7,528,648	103251036	13	1000	150
Total	59,144,663	815012032		3000	500

Sampling design to quantify tree cover change in Madagascar, 2000-2015

	area,	count,		Total	Training
Stratum	ha	30x30m pixels	% total	samples	goal
No loss / no trees	25,141,547	348008206	43	200	50
No loss / tree cover	23,815,964	327272139	40	800	150
Loss 2001-2015	2,658,505	36480651	4	1000	150
Buffer around loss	7,528,648	103251036	13	1000	150
Total	59,144,663	815012032		3000	500

Reference data collection interface

Sampling reference data block example

NDWI

Using GLAD Methods at the National Scale

Country/Region	Project	Partners/Donors
Peru	Operational monitoring of humid tropical forest conversion in support of REDD+ and IPCC GHG reporting, 2000-current.	MINAM, SilvaCarbon
Colombia	Comprehensive land-cover monitoring for IPCC GHG reporting. 2000- ongoing.	IDEAM, SilvaCarbon
Ecuador	Forest cover change quantification 2000-2011.	SilvaCarbon
Mexico	Tree cover extent, structure, and change assessment, 1985-2014	CONABIO
Mesamerica	Tree cover cover change quantification 1985-2015 in support of REDD+.	NASA SERVIR, RFF
Democratic Rep. of the Congo	Forest monitoring 2000-current, forest type mapping, habitat modelling.	USAID, OSFAC, JGI
Rep. of the Congo	Forest monitoring 2000-current, forest type mapping.	USAID, CNIAF
Cameroon	Forest monitoring 2000-current.	USAID, SilvaCarbon
Vietnam	National tree cover monitoring in support of NFI	FIPI, SilvaCarbon
Bangladesh	Tree canopy cover monitoring 2000-current in support of REDD+ and NFI.	RIMS, SilvaCarbon
Low Mekong	Forest extent, structure, and change assessment, 2000-current, in support of RLCMS.	NASA SERVIR, ADPC
Indonesia	Forest cover change quantification 1980-2000, wetlands mapping.	USFS, MoF, LAPAN
Nepal	Tree canopy cover change assessment, 2000-2016	DFRS, ICIMOD, SilvaCarbon