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Forest fires contribute to global greenhouse gas emissions and can negatively affect public
health, economic activity, and provision of ecosystem services. In boreal forests, fires are a
part of the ecosystem dynamics, while in the humid tropics, fires are largely human-
induced and lead to forest degradation. Studies have shown changing fire dynamics
across the globe due to both climate and land use change. However, global trends in fire-
related forest loss remain uncertain due to the lack of a globally consistent methodology
applied to high spatial resolution data. Here, we create the first global 30-m resolution
satellite-based map of annual forest loss due to fire. When producing this map, we match
the mapped area of forest loss due to fire to the reference area obtained using a sample-
based unbiased estimator, thus enabling map-based area reporting and trend analysis.
We find an increasing global trend in forest loss due to fire from 2001 to 2019, driven by
near-uniform increases across the tropics, subtropical, and temperate Australia, and
boreal Eurasia. The results quantify the increasing threat of fires to remaining forests
globally and may improve modeling of future forest fire loss rates under various climate
change and development scenarios.
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INTRODUCTION

Increasing global temperatures and more prolonged and severe droughts over the past decades are
creating favorable wildfire conditions (Jolly et al., 2015). Fire season severity and length are projected
to increase throughout the globe by the end of the century, most notably in the northern high
latitudes (Flannigan et al., 2013). Humans directly affect fire regimes through fire suppression and
novel ignition patterns from urban and agricultural encroachment (Moritz et al., 2014). At the same
time, human activities resulting in forest fragmentation (Pütz et al., 2014; Potapov et al., 2017;
Hansen et al., 2020) and degradation (Ghazoul et al., 2015) reduce the resilience of forests to fire
(Cochrane, 2003; Broadbent et al., 2008; Xu et al., 2020). This complex interaction of socioecological
factors is creating regional variations in trends of forest fire severity and frequency (Moritz et al.,
2014; Andela et al., 2017). These regional changes are likely to alter the global climate through
biophysical feedbacks, although the potential magnitude and direction of these long-term changes
remain uncertain (Liu et al., 2019; Walker et al., 2019).

In recent years, extreme wildfire events in Brazil, Australia (Boer et al., 2020), and California have
once again attracted public attention to the issue. However, especially in the case of Amazonian fires
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(Cardil et al., 2020), there was no clear information on what
exactly was burning: forests or previously deforested areas that
had been converted to pasture and cropland. Active fire data
obtained from the Visible Infrared Imaging Radiometer Suite
(VIIRS) and Moderate Resolution Imaging Spectroradiometer
(MODIS) sensors provide near-real-time information on forest
fires (Schroeder et al., 2014; Giglio et al., 2016), but the coarse
spatial resolution of the data (375 m for VIIRS and 1 km for
MODIS) does not enable confident discrimination of forest and
non-forest fires close to forest edges. This issue is particularly
significant for deforested landscapes, where relatively small
patches of the remaining forests are intertwined with areas
previously cleared for agriculture. Examples of such landscapes
are “fishbone” forest clearing by settlers in the Brazilian Amazon
and slash-and-burn farming areas throughout the tropics. Higher
spatial resolution data distinguishing between forest and non-
forest fires in these deforested landscapes would inform land use
decisions and policy changes aimed to preserve primary forest
remnants.

Existing global burned area maps (Andela et al., 2019; Giglio
et al., 2018; Lizundia-Loiola et al., 2020) have a coarse resolution
of 250–500 m and do not distinguish between forest fires
resulting in tree cover loss (stand-replacement fires) and
those that do not (non–stand-replacement fires). The Food
and Agriculture Organization of the United Nations (FAO)
Forest Resources Assessment (FRA) 2020 (FAO, 2020) has
reported a regional total of “tree cover area burned” by
intersecting a 500-m resolution burned area map (Giglio
et al., 2018) with the year 2000 global 30-m tree cover map
by Hansen et al. (2013). This approach includes the area of
seasonal non–stand-replacement forest fires and area of slash-
and-burn agriculture (where fires are ignited after the trees are
cut down) together with stand-replacement fires. Eastern and
Southern Africa and Western and Central Africa are thus
highlighted in the 2020 FRA as two major regions of “tree
cover area burned,” even though most fires in these regions
occur in fire-adapted parkland and woodland savannas with
little or no tree mortality. Such reporting is misleading from the
carbon accounting perspective and obscures potential increases
in tree cover loss due to fire in the areas where forest fires rarely
occur, such as tropical rainforests (Cochrane, 2003). Other
global assessments report the area of stand-replacement
forest fires by combining 500-m burned area maps (Giglio
et al., 2018) with 30-m resolution global forest loss data
(Hansen et al., 2013) aggregated to 500 m to match the
burned area data (Liu et al., 2019) or by relying on country-
reported statistics (van Lierop et al., 2015), with both
approaches affected by inconsistencies in input data
resolutions and definitions. Existing high spatial resolution
(≤30 m) regional- and national-scale remote sensing studies
of stand-replacement forest fires are mostly focused on the
temperate and boreal forests of North America and Eurasia
(Krylov et al., 2014; Harvey et al., 2016; Guindon et al., 2018;
Huo et al., 2019; Schleeweis et al., 2020). No high-resolution
global satellite-based assessment of forest loss due to fire
employing consistent definitions and methods across biomes
has been available to date.

The current study fills this global information gap by
producing a map of forest loss due to fire for 2001–2019
(Figure 1), adding to the suite of global 30-m forest cover
monitoring products (Hansen et al., 2013), updated annually
as a part of the Global Forest Watch initiative (https://www.
globalforestwatch.org/). By limiting the area of interest of our loss
due to fire map to within the spatial extent of forest loss mapped
by Hansen et al. (2013), we have excluded low-intensity and
understory forest fires that do not result in substantial tree canopy
loss at the scale of a 30-m pixel. Fires within recent forest loss due
to other drivers are also excluded. For example, we did not
include burning of felled logs following mechanical canopy
removal, which is common in slash-and-burn agriculture and
large-scale deforestation, into our definition of forest loss due to
fire. Forest loss due to fire was mapped using global Landsat-
based annual change detection metrics for 2001–2019 (Potapov
et al., 2020) as input data to a set of regionally calibrated
classification tree ensemble models (see Methods for more
details and Figure 2A for model region boundaries).
Consistent with the global forest loss map (Hansen et al.,
2013), we have mapped only the first stand-replacement forest
disturbance for each pixel between 2001 and 2019. Therefore,
areas of forest loss due to fire that occurred when forest regrowth
followed an initial disturbance early in the study period have not
been detected in the current analysis. The result of the mapping
process can be viewed as a set of binary maps (forest loss due to
fire vs. other drivers), each identified by the choice of a boundary
between the two classes based on a continuous output from a
decision tree. No further change in these maps occurs in the
remainder of the methodology.

Following the initial mapping, the sample-based unbiased
estimators of the total area of forest loss due to fire for each
model region from 2001–2019 were obtained based on the
interpretation of satellite imagery for a probability sample of
pixels (Olofsson et al., 2014). These area estimates were used
to select each regional map from a set of existing binary
candidate maps such that at the regional level, the map-
based area of forest loss due to fire (derived by counting
pixels of the map) matches the sample-based area estimate
(Figure 3; Table 3). We incorporated sampling variability
(±standard error) into the map selection protocol for all
regions except Africa (Figure 4), which allows us to
produce sub-regional map-based area estimates (e.g., for
climate domains or countries) with a measure of
uncertainty. Using the sample data, we also evaluated the
direction of temporal trends in the mapped area of forest loss
due to fire at the regional scale (Figure 5) and year agreement
for the individual sample pixels (Figure 6).

We report the annual estimates of the forest loss due to fire
areas and their trend between 2001 and 2019 globally and by the
climate domain (Table 1; Figure 8, Supplementary Table S1)
within each region/continent (Supplementary Table S2,
Figures 7, 8), and by country (Supplementary Table S4,
Figure 10). Additionally, we analyze forest loss due to fire
trends separately in tropical primary forests (Supplementary
Table S2, Figure 9), which have high biodiversity and
ecosystem service value. All results presented (Figures
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7–10; Table 1, Supplementary Tables S1–S4) are based on our
new map selected to match the sample-based area estimate.
Map-based areas of forest loss due to fire are reported within
the joint extent of mapped tree cover in 2000 and forest loss
from 2001 to 2019 (Hansen et al., 2013), thus representing the
first stand-replacement forest loss due to fire within forests
established by the year 2000. Based on the reference
probability sample, an estimated 8% of the global area of
forest loss due to fire has been omitted by this version of
our new map (Table 4). Consequently, our reported map-
based estimates of forest loss due to fire are conservative.
Additional discussion of map versions and their accuracy is
presented in Materials and Methods.

MATERIALS AND METHODS

The general overview of the methods (including mapping and
sampling) is presented in Supplementary Figure S1. For the
overview of the sample-based component of the study, please

refer to the end of Sample-Based Map Selection and Accuracy
Assessment.

Definitions
Forest loss (stand-replacement disturbance or tree cover loss) is
defined, following Hansen et al. (2013), as the removal of woody
vegetation exceeding 5 m in height. Forest loss due to fire was
mapped only within the extent of the global 30-m resolution
2000–2019 forest loss data set (Hansen et al., 2013), and only the
first stand-replacement forest disturbance between 2001 and 2019
was labeled as attributed to fire or non-fire for each pixel. Stand-
replacement forest fires are defined as natural or human-ignited
fires, resulting in direct loss of tree canopy cover exceeding 5 m in
height. This definition includes wildfires, escaped fires from slash-
and-burn agriculture, hunting and other human activities, and
intentionally set fires (e.g., for land grabbing). Burning of
previously felled trees is excluded from our definition of forest
loss due to fire because the initial driver of forest loss in this case is
mechanical removal. Burning of felled trees is common in large-
scale deforestation in Brazil and Indonesia (Morton et al., 2006;

FIGURE 1 | Global disaggregation of 2001–2019 Hansen et al. (2013) 30-m forest loss map into forest loss due to fire vs. other direct drivers of loss (A) and
examples of the annual maps of forest loss due to fire: (B) mosaic of annual fires and clear-cuts in the boreal forests of Krasnoyarsk region, Russia; (C) 2016 fire in a
region of selective logging in the humid tropical forest in northern Republic of the Congo; (D) 2019 fire in dry tropical forests of Bolivia. Year of forest loss due to fire is from
Hansen et al.(2013) with annual updates. Themap area shown as forest loss due to fire matches the sample-based area estimate at the regional level (seeMaterials
and Methods for details). The grayscale background image is year 2000 % tree cover with black corresponding to 0% and white to 100% tree cover. The global forest
loss due to fire map within the entire extent of the global forest loss map by Hansen et al.(2013) is available at https://glad.umd.edu/dataset/Fire_GFL/.
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Gaveau et al., 2014) and is a part of the slash-and-burn
subsistence farming cycle. In the current article, we are
reporting the areas and trends of forest loss due to fire only
within the forests established by the year 2000 [with year 2000 %
tree cover (Hansen et al., 2013) above zero]. We do not employ a
single % tree cover threshold to define forests, but rather report
trends for a variety of possible forest definitions with 10% tree
cover increments (Table 1). The full version of our new map
(available for download from https://glad.umd.edu/dataset/Fire_
GFL/) disaggregates all pixels of the global forest loss map
(Hansen et al., 2013) (including areas with 0% year 2000 tree
cover) into forest loss due to fire vs. due to other drivers;
therefore, it may include stand-replacement fires in the forests
that have regrown to meet the 5-m height criterion between 2001
and 2019.

Fire vs. Non-Fire Forest Loss Mapping
The primary inputs for classification of forest loss into loss due to
fire and loss that is not fire-related are Landsat-based annual
change detection metrics (Potapov et al., 2020). To create these
metrics, normalized clear-sky Landsat observations have been

aggregated by a 16-day observation interval for each year. All
intervals within a year are then ranked using spectral reflectance
from separate bands and normalized band ratios to produce
aggregate spectral metrics for the current year (e.g., maximum,
minimum, and average of 16-day intervals ranked by the value of
Landsat Red band). The differences in spectral reflectance and
index values for the same 16-day interval between the current and
the three preceding years are computed and ranked. The selected
ranks (highest, second highest, lowest, and second lowest) of
these differences are extracted to produce metrics highlighting
interannual changes of spectral reflectance. In addition to the
spectral metrics, we used topography metrics (aspect and slope)
derived from the void-filled seamless Shuttle Radar Topography
Mission digital elevation data (http://srtm.csi.cgiar.org) and
ASTER DEM (https://asterweb.jpl.nasa.gov/gdem.asp). The
code to compute the annual change detection metrics from
16-day Landsat observations is a part of the University of
Maryland Global Land Analysis and Discovery (GLAD) team’s
Landsat Analysis Ready Data (ARD) package, which is available
online (https://glad.umd.edu/ard/home, Change detection
metrics A).

FIGURE 2 | Study regions and sample pixel locations. (A) Mapping and accuracy assessment regions with sample pixel locations; (B) reporting regions. Sample
pixels are colored by stratum presented in Table 2. AFR: Africa, AUS: Australia and Oceania, EUR: Northern Eurasia, EAS: Eurasia, LAM: Latin America, NAM: North
America, and SEA-AUS: combined South and Southeast Asia, and Australia and Oceania.
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Per pixel supervised classification of the annual change
detection metrics was performed within mapped 2000–2019
forest loss (Hansen et al., 2013) using classification and
regression trees (Breiman et al., 1984) with bootstrap
aggregation (21 bagged trees). The training data for fire vs.
non-fire forest loss were collected via visual interpretation of
annual last observation Landsat composites within mapped
forest loss (Hansen et al., 2013), supplemented by visual
inspection of high-resolution imagery available on Google
Earth and national fire databases (Canadian National Fire
Database, 1980–2019, Canadian Forest Service http://cwfis.cfs.

nrcan.gc.ca/ha/nfdb; US Historical fire perimeters, 2000–2019,
Geospatial Multi-Agency Coordination Group https://rmgsc.cr.
usgs.gov/outgoing/GeoMAC/). Manually drawn fire and non-
fire training polygons were used to sample individual Landsat
pixels to train classification tree models (with a sampling rate of
1% for each tree, resulting in millions of individual pixels
sampled to train each regional model). More detailed
descriptions of the training data collection and classification
procedures, as well as links to the tools, are also available from
the GLAD ARD package (https://glad.umd.edu/ard/home, User
Manual).

FIGURE 3 | Map area of forest loss due to fire for all possible integer fire probability thresholds ≥X% (red), and reference estimate of fire disturbance area within
forest loss strata ± SE, derived from a sample (blue). Africa is not shown since the only forest loss due to fire probability thresholds present in a map were 0 and 100%,
and hence, only one candidate map was available. Region boundaries are presented in Figure 2A.
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FIGURE 4 | Example of areas with patches of low and medium certainty of mapped forest loss due to fire: (A) Tomsk region, Russia, confusion with silk moth
damage; (B) Sumatra, Indonesia, confusion with burning on land cleared for large-scale industrial agriculture. Map codes 3 + 4 correspond to the sample estimate of the
area of forest loss due to fire, code 4 to the sample area estimate minus one SE, and codes 2 + 3 + 4 to the sample estimate plus one SE. Grayscale background image is
year 2000 % tree cover with black corresponding to 0% and white to 100% tree cover.

FIGURE 5 | Annual area of forest loss due to fire (3-year averages) from themap (blue and green) and from the reference sample (red) for (A) all regions; (B)Northern
Eurasia; (C) North America; (D) Latin America; (E) combined South and Southeast Asia, and Australia and Oceania; (F) Africa. Blue line corresponds to the forests loss
due to fire model applied annually within the current version (1.7) of Hansen et al.(2013) forest loss map; green corresponds to the fire model applied to the prototype of
the new global forest lossmap, derived by applying the latest annual forest loss model to all years starting from 2001. Map estimates are within the global forest loss
map and year 2000 tree cover >0% (Hansen et al., 2013); sample-based estimates are for all strata (within the entire land area). Error bands for the sample-based area
estimates represent ±SE, and error bands for the map-based estimates represent the uncertainty interval from the sample-matched map. Region boundaries are
presented in Figure 2A.
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The classification models were regionally calibrated, with five
separate regional models for North America, Latin America,
Africa, Northern Eurasia, and combined South and Southeast
Asia, Australia, and Oceania (Figure 2A). The boundaries of the
regional models correspond to the GLAD ARD 1 × 1 degree tile
grid and were selected to avoid crossing any large forest massifs,
thus virtually eliminating the boundary effects from stitching
model results into a global map. Each regionally calibrated model
utilized a full set of annual change detection metrics (Potapov
et al., 2020).

Each regional classification model disaggregating the global
forest loss map into fire vs. non-fire classes was applied to the
annual Landsat-based change detection metrics for the year of
forest loss from the Hansen et al. (2013) map as well as for the
subsequent year. Inclusion of the following year’s metrics
facilitated the identification of late-season forest fires that may
have been detected in the global forest loss map, but do not have
sufficient data in the current year to identify them as forest loss
due to fire. The output of the classification model was the
probability of a forest loss due to fire class, which represents
the relative proportion of fire vs. non-fire training pixels in each
leaf node of the bagged tree model. This means that if an end node

of a classification tree (called “leaf node”) includes only fire or
non-fire training pixels, all the pixels in the classification output
that belong to this node will have either a 100% or a 0%
probability of belonging to forest loss due to fire class (our
target mapping class). Mixed leaf nodes (containing both fire-
and non-fire training pixels, where the model could not make an
unequivocal split between the classes) result in classification
outputs with lower probability of the target class, reflecting the
proportion of the training pixels within each node. For example, a
leaf node with 60% of training pixels labeled as forest loss due to
fire and 40% of training pixels labeled as forest loss due to other
drivers results in output map pixels classified as a 60% probability
of a forest loss due to fire class.

To produce the initial version of the forest loss due to fire map,
which was used as a stratification for allocating the reference
sample, we thresholded fire probability layers derived from the
model applied to the current and following years’ (relative to the
year of mapped forest loss) metrics. We assigned a pixel to the fire
class if it had a fire class probability of ≥50% in at least one of the
two annual model results. We have also performed initial filtering
by the annual occurrence of water (Pickens et al., 2020): pixels
with ≥30% of annual observations that were marked as “water” in

FIGURE 6 | Year of forest loss due to fire from the map and from the reference sample interpretation for the sample pixels identified as forest loss due to fire in both
the map and the reference interpretation. Green corresponds to year agreement and red to disagreement.
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the current or following year were marked as non-fire forest loss.
Thus the initial forest loss due to fire vs. non-fire map was derived
by thresholding the two annual fire model results and two annual
% water maps (for the current and following years) for each pixel
in order to subdivide the global forest loss map into two strata:
likely forest loss due to fire and loss due to other direct drivers.
These strata were used to increase the sample size in the loss due
to fire strata in Latin America, Africa, and combined South and
Southeast Asia, and Australia and Oceania, where the forest loss
due to fire is relatively rare, and to increase the sample size in the
forest loss due to other drivers stratum in Northern Eurasia
(Table 2). The final forest fire vs. non-fire forest loss map was the
map for which the areas of fire loss and non-fire loss matched
their corresponding sample-based area estimates within the
extent of the global forest loss map (Hansen et al., 2013) (see
next section for further details).

Sample-BasedMap Selection and Accuracy
Assessment
The first use of the reference probability sample data was to
evaluate whether the following methodological steps improved
final map accuracy: 1) applying forest loss due to fire model to the
subsequent year change detection metrics and 2) applying %
annual water threshold to classification results. For each model
region, the set of candidate binary maps of forest loss due to fire
vs. other drivers was created using all possible fire probability
thresholds from the model applied to the current and next year
metrics and their combinations, and all possible % annual water
thresholds. The last step in the protocol was to select the map in
the candidate set for which the area of loss due to fire matched the
sample-based area estimate within the extent of the global forest
loss map (Figure 3; Table 3). To incorporate uncertainty in the
map selection protocol due to variability of the sample-based area
estimate, we selected two additional maps from the candidate set
of maps. One map was selected so that the map-based area of
forest loss due to fire matched the sample-based area minus one
standard error, and the other map was selected to match the
sample-based area plus one standard error. These two additional
maps provide an indication of how the results may vary due to
estimating the target area from a probability sample.

For the objectives outlined above, we sampled only within the
extent of forest loss mapped by Hansen et al. (2013). The mapped
forest loss areas were subdivided into two fire substrata within
each of the mapping regions using the initial map of forest loss
due to fire, resulting in a total of 10 forest loss strata (Table 2). We
allocated 100 sample pixels each in all strata that had an area
smaller than the average area across all forest loss strata. For the
larger than average strata, we computed the sample size as 100 ×
stratum size/average stratum size. This gave us a sample size of
1,259 pixels, which based on the resulting standard errors (SEs)
was deemed sufficient to evaluate the model performance and
estimate the total 2001–2019 area of forest loss due to fire within
the Hansen et al. map for each mapping region. The resulting
relative SEs of regional area estimates are 2.8% and 3.8% in North
America and Northern Eurasia, 10.1% in combined South and
Southeast Asia, and Australia and Oceania, 11.1% in LatinT
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America, and 37.4% in Africa (Table 3). The area estimates of
forest loss due to fire from this initial sample within mapped
forest loss were then used as targets for selecting the map that
matched the estimated area in each model region (Figure 3;
Table 3). The sample pixel locations are shown in Figure 2A.

A second set of sampling strata was created covering the
spatial region not mapped as forest loss by Hansen et al.
(2013) (Table 2). These strata were added to estimate the area
of forest loss due to fire that was omitted in our new map due to
the omission of forest loss in the global map (Hansen et al., 2013).
The full sample, both within and outside of the global loss map,
was then used to estimate the total area of forest loss due to fire
globally and by the map region and to assess the accuracy of our
new area-matched map of forest loss due to fire. The strata
outside of the mapped forest loss (Hansen et al., 2013) include
the area within a 120-m buffer around the pixels mapped as forest
loss due to fire (after selecting the map to match to the sample
estimate within the forest loss strata) and all other land areas
outside of the mapped loss and buffer. Using a buffer to intensify
sampling where omission errors in the map are most likely is a
recommended practice (Olofsson et al., 2020). The 120-m buffer
was selected following our previous study in the Brazilian
Amazon (Tyukavina et al., 2017), and it is likely a
conservative buffer distance for a global analysis. We have
sampled an additional 100 pixels in the buffer stratum and in
the no forest loss stratum in each map region (Table 2), resulting

in the total sample size of 2,259 pixels. This sample size was
considered sufficient for map accuracy assessment because it
resulted in the relative SE of the global estimate of the total area
of forest loss due to fire of 3.3% (Table 4). The SEs of the global
estimates of user’s accuracy (UA) and producer’s accuracy
(PA) of the forest loss due to fire map class were 1.7% and 2.8%,
respectively. The relative standard errors of the regional area
estimates ranged from 4.0% to 12.3%, with the exception of
Africa (36.7%); the SEs of regional estimates of UA ranged
from 1.7% to 8.9% and the SEs of PA ranged from 3.4 to 12.7%,
with the exception of Africa, where the SE of PA was 37.6%
(Table 4).

The global forest loss data are stored in a rectangular grid of
geographic coordinates (latitude/longitude in the geographic
reference system WGS84). This means that closer to the poles,
the actual area that each pixel represents gets smaller than a pixel
on the equator. To increase the sample size of pixels near the
equator, we implemented a sampling protocol that selected pixels
with probability proportional to their area, following the
approach of Pickens et al. (2020). The equations for estimating
the forest loss due to fire area and its standard error, and UA and
PA of this target map class with their respective SEs, for the
weighted sampling with replacement are provided in the
Supplementary Material. The Python codes for implementing
these equations along with the input data to compute the sample-
based area of forest loss due to fire and the accuracy of the

FIGURE 7 | Forest loss due to fire between 2000 and 2019 in (A) climate domains and regions: (B) total area; (C) annual area trend (two-sided Mann–Kendall test,
with significance level set at α = 0.05 and 0.10, regions with mean annual area of forest loss due to fire <10 km2/yr. are excluded from trend analysis); (D) area of forest
loss due to fire as percent of total 2001–2019 forest loss area from the Hansen et al.(2013) map. Area estimates and uncertainty intervals are map-based, within the joint
extent of mapped tree cover in 2000 and forest loss from 2001 to 2019 (Hansen et al., 2013). AFR: Africa, AUS: Australia and Oceania, EAS: Eurasia, LAM: Latin
America, and NAM: North America. Climate domains are the following aggregations of climate domains and a tropical rainforest ecoregion from the FAO Global
Ecological Zones 2010 (FAO, 2012): BRL: boreal, TMP: temperate, SBTRP: subtropical, TRP: tropical outside of rainforests, TRP RNF: tropical rainforests. Regions are
labeled with their numeric IDs from (A) in (B–D). Data are available in Supplementary Table S2.
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sample-matched map along with their SEs globally and for each
model region (Figure 2A) are available at https://github.com/
sashatyu/Fire_GFL.

For each sample pixel, we created a set of reference data for
2000–2019, including annual and bimonthly Landsat image

composites, time-series of spectral indexes (NDVI and
NDWI), and an SWIR Landsat band based on the 16-day
cloud-filtered GLAD ARD data, and a link to the pixel
location in Google Earth. Each sample pixel was visually
examined independently by two experts; all sample pixels with

FIGURE 8 | Annual area of forest loss due to fire by climate domain globally (A) and by region (B–F). Climate domains and a tropical rainforest ecoregion are from
the FAO Global Ecological Zones 2010 (FAO, 2012). AFR: Africa, AUS: Australia and Oceania, EAS: Eurasia, LAM: Latin America, and NAM: North America. Region
boundaries are presented in Figure 2B. Area estimates and uncertainty intervals aremap-based, within the joint extent of mapped tree cover in 2000 and forest loss from
2001 to 2019 (Hansen et al., 2013). Data are available in Supplementary Tables S1, S2. Regions with statistically significant increasing trend of forest loss due to
fire are marked with ** (Mann–Kendall test, p < 0.05) and * (0.05 ≤ p < 0.10).

FIGURE 9 | Annual area of forest loss due to fire in primary vs. non–primary tropical forests in (A) all tropics; (B) Africa; (C) Latin America; (D) Australia and Oceania;
(E) Eurasia. Area estimates and uncertainty intervals are map-based, within the joint extent of mapped tree cover in 2000 and forest loss from 2001 to 2019 (Hansen
et al., 2013). Primary forests are defined using the map of Turubanova et al. (2018). Tropical climate domain boundaries are from FAO Global Ecological Zones 2010
(FAO, 2012). Region boundaries are presented in Figure 2B. Data are available in Supplementary Table S3. Primary and non–primary tropical forests of all
regions exhibit increasing trends of forest loss due to fire (Mann–Kendall test, p < 0.05; Asian tropical non-primary forests 0.05 ≤ p < 0.10), except for Asian tropical
primary forests, where no statistically significant trend is detected (p = 0.73).
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mapped forest loss for Latin America and insular Southeast Asia
(831 out of 2259, 37%) were additionally interpreted by a regional
land cover expert. At the first stage of interpretation, each analyst
assigned the following labels to each sampled pixel: fire/no fire
forest disturbance, confidence of fire forest disturbance (high,
low), year of fire, and confidence of fire year (high, low).
Interpreters looked for the spectral signature of ash and
distinct spatial patterns of burning, which are well

documented in remote sensing literature (Giglio, 2007; Roy
et al., 2013). They also compared pre- and post-fire time-series
of NDVI, NDWI, and SWIR Landsat band to identify whether the
fire resulted in considerable vegetation damages, corresponding
to our stand-replacement fire definition. These initial sample
interpretations were performed blind (interpreters not knowing
the stratum and forest loss year from themaps). The agreement of
the fire/no fire labels after this initial round of sample

FIGURE 10 | Forest loss due to fire between 2000 and 2019 by country. (A) Area trend (two-sidedMann–Kendall test with significance levels set at α = 0.05 and α =
0.10, countries with mean annual area of forest loss due to fire <10 km2/yr. are excluded from trend analysis); (B) total area; (C) annual area for countries with total
2001–2019 area of forest loss due to fire >10,000 km2; (D) area of forest loss due to fire as percent of total 2001–2019 forest loss area from Hansen et al.(2013) map.
Area estimates and uncertainty intervals are map-based, within the joint extent of mapped tree cover in 2000 and forest loss from 2001 to 2019 (Hansen et al.,
2013). Data are available in Supplementary Table S4.

TABLE 2 | Sampling design. AFR: Africa, EUR: Northern Eurasia, LAM: Latin America, NAM: North America, and SEA-AUS: combined South and Southeast Asia, and
Australia and Oceania. Region boundaries are presented in Figure 2A.

Model
region

Forest loss mapped by Hansen et al.(2013) Buffer outside of mapped loss
due to fire (120 m)

No loss (areas outside of mapped
forest loss and buffer)Due to fire (current study) Due to non-fire drivers (current

study)

Stratum
size (km2)

Pixels
sampled

Stratum
size (km2)

Pixels
sampled

Stratum
size (km2)

Pixels
sampled

Stratum
size (km2)

Pixels
sampled

AFR 14,491 100 595,255 134 70,477 100 31,553,742 100
EUR 682,940 153 332,993 100 790,198 100 32,938,703 100
LAM 147,705 100 946,369 213 534,657 100 18,532,208 100
NAM 414,734 100 486,273 109 424,273 100 16,344,714 100
SEA-AUS 161,635 100 669,855 150 288,070 100 22,511,672 100
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interpretation was high; all interpreters agreed about the
presence of fire-related forest loss for 80% of the sample
pixels, and at least two interpreters agreed for 96% of the
sampled pixels. After this initial round, the interpreters
worked together to reach a consensus for those sample pixels
with interpretation disagreements and low confidence of
interpretation. At this stage, interpreters also used the year of
loss from the Hansen et al. (2013) map because in many cases a
sample pixel experienced multiple change events between 2001
and 2019. Interpreters considered the change event closest to the
date detected by the global forest loss map as the reference
change event. The resulting consensus fire/no fire sample labels
have high interpretation confidence for 93% of the sampled
pixels.

From these fire/no fire reference sample labels, we estimated
the area of fire-related disturbances within the forest loss strata,
which was used as a target for map selection (see Table 3 and
Figure 3 for more details). However, there may be some areas
incorrectly mapped as forest loss in the global map that burned
according to our initial sample interpretation, but might not
have reached the 5-m height threshold before burning. There is
no way of reliably visually distinguishing whether woody
vegetation reached this height threshold by the time of
burning from the satellite imagery. Therefore, to
distinguish our initial reference sample labels into stand-
replacement forest fires and burning of other vegetation,
we used an auxiliary % tree cover data set for the year
2000 (Hansen et al., 2013). The sample pixels identified as
a fire disturbance in the initial visual sample interpretation
were considered stand-replacement forest fires only if a
sampled pixel had the year 2000 tree cover above zero.
While acknowledging that the % tree cover map is not
perfect and that some tree cover in the tropics might have
regrown between year 2000 and the time of burning, we find
the addition of the tree cover mask to the reference sample
useful for distinguishing between forest and non-forest fires in
sparse canopy forests, particularly in the boreal regions and in
Australia. The final sample-based area of forest loss due to fire
and accuracy of the selected map (Table 4) were estimated
from the sample reference labels with burning of year 2000
zero tree cover areas considered as “no forest loss due to fire”.
All reference sample data, along with the final sample
interpretation results are available online (https://glad.umd.
edu/Fire_GFL).

From the reference sample, we found that using the
subsequent year’s model in addition to the current year’s
results decreased the accuracy of the final map. We also
found that including an annual % water threshold did not
improve the map accuracy. Therefore, the final map selection
was from a set of candidate maps based only on the current year
model’s fire probability values (classification tree model applied
to the annual change detection metrics of the same year as the
year of loss from the global map).

To select the map from a candidate map set based on the
current year model’s fire probability values, we computed
sample-based estimates of the area of fire disturbances within
the forest loss strata (Table 3) for each of the model regions,T
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along with the standard errors of the area estimates. We then
selected three maps for each region, determining the probability
thresholds that corresponded to the maps matching the sample-
based area estimate minus one SE, the sample-based area
estimate, and the sample-based area estimate plus one SE
(Table 3; Figure 3). The classification model for Africa had
only 0 and 100 probability values of forest loss due to fire
since the target class in Africa is very small and the selected
training data sampling rate resulted in a classification tree model
with pure end leaf nodes (no nodes with mixed training data).
Because intermediate target class probability values were not
available in Africa, we had only one candidate map of forest
loss due to fire. However, the total 2001–2019 map area of forest
loss due to fire in Africa falls within ±SE of the sample-based area
estimate, and therefore, we consider the map to have negligible
bias in Africa relative to the area of the sample-based estimate.

Figure 4 further illustrates the impact of sampling variability
of the sample-based area estimate on the map selection protocol:
the sum of red map pixels (code 4) corresponds to the sample area
estimate minus one SE (i.e., those pixels with the highest certainty
of forest loss due to fire class), adding orange (code 3) to red (code
4) pixels results in a map area matching the sample-based area
estimate, and adding yellow (code 2) pixels to orange and red
(codes 3 and 4) yields a map area matching the sample area
estimate plus one SE. Thus, the pixels coded with yellow (code 2)
have the lowest certainty of belonging to the target class. Note that
most orange and yellow pixels (codes 2 and 3) are located on
the boundaries of high certainty (red, code 4) fire or high
certainty no fire (blue, code 1) pixel patches. Relatively large
patches of lower certainty fire pixels are found in a few areas
with uncertain boundaries between thematic classes. One such
example is where insect damage is found in the same landscape
with forest fires (Figure 4A) as occurs with the mountain pine
beetle in the Rocky Mountains of North America (Jenkins
et al., 2014) and the Siberian silk moth in the Tomsk region of
Russia (Kharuk et al., 2017). In the tropics, uncertain areas are
found in the regions with intensive slash-and-burn agriculture
(e.g., Madagascar) and where large-scale industrial forest
clearing is often followed by burning of the felled trees
(Gaveau et al., 2014) to clear the area for agricultural use or
land grabbing (e.g., Sumatra, Indonesia, Figure 4B). The final
sample-matched map with incorporated uncertainties is
available for download and as an interactive map from
https://glad.umd.edu/dataset/Fire_GFL/.

For applications not requiring uncertainty of the forest loss
due to fire class, this final map could be converted into the binary
map by assigning pixels with codes 3 and 4 to the forest loss due to
fire class and assigning pixels with codes 1 and 2 to forest loss due
to other drivers. To derive a conservative forest loss due to fire
map, code 4 alone could be used as the forest loss due to fire class.
The map for Africa has codes 5 (forest loss due to fire) and 1
(other drivers) due to the lack of an uncertainty interval for that
region.

Globally, the map area of forest loss due to fire corresponding
to the sample area estimate within the global forest loss map
(Hansen et al., 2013) is 2% smaller than the full sample-based
estimate of forest loss due to fire area, derived from all samplingT
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strata (Table 4, total map area vs. sample estimate). This is the full
version of the map, which includes loss due to fire in forests,
established by the year 2000, and in forests that have regrown
between 2001 and 2019. UA and PA of the forest loss due to fire
class in this full map are 0.84 (SE 0.02) and 0.82 (0.02),
respectively (Table 4, total map accuracy). The global area of
forest loss due to fire, omitted by our new map, is estimated from
the reference sample at 0.22 (SE 0.03) million km2, 46% of which
or 0.10 (0.02) million km2 is within the 120-m buffer around the
mapped forest loss due to fire, and the rest is misattributed as
other drivers of forest loss within the extent of the global forest
loss map (Hansen et al., 2013). Most of the omission errors in the
buffer stratum are related to underestimation of stand-
replacement forest loss within fire events partially captured by
the global forest loss (Hansen et al., 2013) map. No omission
errors were found in the no loss stratum outside of the buffer.
Another 0.20 (0.02) million km2 was falsely identified in our map
as forest loss due to fire (commission errors).

To produce the version of our new map, representing forest
loss due to fire in the forests established by the year 2000, we
labeled all pixels with absent tree cover in the year 2000 as “no
forest loss.” This version of our new map has reduced area of
forest loss due to fire commission errors of 0.11 (0.02) million
km2 and improved UA of mapped forest loss due to fire class of
0.90 (0.02) (Table 4, UA within tree cover >0%), compared to the
full version of the map. This version of the map was used for area
and trend reporting in the current study to eliminate the
inconsistencies of forest loss detection in regrowing forests
and in very sparse tree cover, which are possibly present in
the annually updated global forest loss map (Hansen et al.,
2013). Thus, in the Results section, we report the map-based
areas and trends of forest loss due to fire within a static year 2000
forest mask.

The continental accuracies of both map versions vary
(Table 4): North America and Northern Eurasia, where
wildfires are widespread, have the highest UA and PA of
forest loss due to fire class, and Africa, where wildfires are
very rare, has the lowest accuracy. The largest difference in
UA between the two map versions is observed in Australia
and Northern Eurasia, were stand-replacement fires in sparse
opened-canopy forests are common, and therefore the global
forest loss map (Hansen et al., 2013) has high ambiguity in
distinguishing between forested and non-forested burned
patches.

When we are reporting forest loss due to fire expressed as a
percent of the total forest loss (Figures 2D, 5D; Table 5,
Supplementary Tables S1–S4), the area of the total forest loss
is obtained from the global map by Hansen et al. (2013). The
global accuracy of the forest loss class reported in the original
publication [UA, 0.87 (0.03) and PA, 0.88 (0.03)] is balanced,
meaning that the global area of forest loss is neither significantly
overestimated nor underestimated, providing a representative
base area from which we have calculated the percentages. The
UA of the version of forest loss due to fire map, which is used for
area reporting (Table 4, UA within tree cover >0%), is similar
[0.90 (0.02)], while its PA is lower [0.82 (0.02)]. This greater
omission results in the reported area of forest loss due to fire

globally being underestimated by about 8% (Table 4, map area
within tree cover >0% vs. sample estimate), which means that the
global percentage of forest loss due to fire could also be
underestimated by 8%. Therefore, the global % of forest loss due
to fire reported in Table 5 (26–29%) could in reality be as high as
28–32%. For Africa, where relative omission of forest loss due to fire
is the highest (Table 4), this percentage could change from a
reported 2 to 3%. These potential underestimations are not large
and strengthen our findings of higher proportions of forest loss due
to fire from the total forest loss when compared to previous studies
(Krylov et al., 2014; Curtis et al., 2018; Guindon et al., 2018).

The map-based areas of forest loss due to fire within non-zero
year 2000 tree cover are reported by countries (Figure 10,
Supplementary Table S4) using GADM version 2 country
boundaries (https://gadm.org/) and by FAO Global Ecological
Zones 2010 (FAO, 2012). FAO global ecological zones were
aggregated into four climate domains (boreal, temperate,
subtropical, and tropical), and the tropical domain was then
subdivided into two zones: within and outside of tropical
rainforests, resulting in five reporting zones (Figure 7,
Supplementary Table S2). Polar ecozones were excluded due
to the absence of tree cover. Within the tropical climate domain,
the area of forest loss due to fire is also reported separately for
primary and non-primary forests (Figure 9) defined using the
pan-tropical primary forest map (Turubanova et al., 2018).

Below is the summary of the sample-based map selection and
accuracy assessment steps, described in this section of Methods:

1) The initial sample of 1259 pixels was selected from two strata
defined within mapped global forest loss (Hansen et al., 2013)
(fire-related and non-fire–related forest loss, Table 2,
Figure 2A). These sample pixels were visually interpreted
to identify whether the mapped loss event was associated with
fire or not. These data were used for the following:
a) to identify that applying the fire vs. no fire classification

model to next year’s change detection metrics (Potapov et al.,
2020), as well as using%water threshold (Pickens et al., 2020)
to filter classification results, did not improve the accuracy of
fire detection. The final map was selected from a set of
candidate maps based on the decision tree model applied to
only the current year change detection metrics;

b) from the set of potential candidate maps based on the
current year’s metrics, to select the binary map (fire and
non-fire classes) for each model region (Figure 2A) for
which the mapped area of fire disturbances matches the
sample-based area estimate within the target region
defined by mapped forest loss (Figure 3; Table 3);

c) to construct map uncertainty intervals for each model
region by selecting the maps that correspond to the
sample-based area estimates ± one standard error
(Figure 3; Table 3).

2) An additional sample of 1000 pixels was selected from two
strata defined within all land pixels outside of the mapped
global forest loss (Hansen et al., 2013): one stratum was the
area represented by a 120-m buffer around the forest cover
loss (Hansen et al., 2013) and the other stratum was a no loss
stratum within all remaining land pixels (Table 2; Figure 2A).
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This additional sample was used to quantify the omission of
forest loss due to fire outside of the area of mapped forest loss.
The additional sample pixels were visually interpreted in the
same manner as the initial sample to identify the presence or
absence of fire within the study period.

3) The final “forest loss due to fire” reference labels for the full
sample of 2259 pixels were derived by combining the fire vs.
no fire visual interpretation results with the year 2000 % tree
cover map: only the fire sample pixels within non-zero year
2000 % tree cover were considered “forest loss due to fire.”

4) This final interpretation of the full reference sample was used
to assess the accuracy of the two versions of the forest loss due
to fire map (Table 4):
a) original sample–matched map within mapped global

forest loss (Hansen et al., 2013), which is available to
download from https://glad.umd.edu/dataset/Fire_
GFL/and

b) a version of the map used for area and trend reporting in
the Results section of this article, also within the extent of
mapped global forest loss (Hansen et al., 2013), where all
the areas with zero % tree cover in the year 2000 (Hansen
et al., 2013) were mapped as “no forest loss.” This was done
to limit the impact of forest loss commission errors in
sparse tree cover areas in the original forest loss map
(Hansen et al., 2013) on reported trends. This map version
includes forest loss due to fire only in the forests
established by the year 2000, while the full version
available for download might include stand-replacement
fires in post-2000 forest regrowth.

Forest Loss Date and Trend Assessment
The date of forest loss in the current study is derived from the
Hansen et al. (2013) global forest loss map and represents the first
stand-replacement forest disturbance detected between 2001 and
2019 for each pixel. A trend analysis was performed using the
pyMannKendall package (Hussain and Mahmud, 2019). We did
not intend to modify the dates of forest loss on the map using the
reference sample data. However, we did collect a date of loss for

the sampled pixels identified as forest loss due to fire when
interpreting the sample. Our reference sample is not large
enough to provide precise estimates of the annual area of
forest loss due to fire in each of the model regions. Therefore,
for the purposes of comparison of the map and sample-based
annual results, we computed 3-year average annual areas of forest
loss due to fire for all model regions (Figure 5).

The latest version (1.7) of the global forest loss map includes
annual updates based on improved classification models, hence
there are temporal inconsistencies in loss detection rates between
the early 2000s and recent years, previously reported in regional
studies (Tyukavina et al., 2017, 2018). To test if these model
differences affect the trends of forest loss due to fire, we have
applied the latest global annual forest loss detection model
retroactively starting from 2001, thus constructing a prototype
of the temporally consistent global forest loss map. We have then
applied the fire detection model from the current study within the
updated forest loss extent map for each year (2001–2019). The
map-based estimates of 3-year averaged annual areas forest loss
due to fire within the current and the prototype global forest loss
maps are shown in Figure 5 (in blue and green, respectively). The
overall trend direction in the 3-year averaged sample data agrees
with both versions of the map: increasing trend in the area of
forest loss due to fire (Mann–Kendall test, p < 0.05) is observed
globally, in Northern Eurasia, Latin America, and Africa; the
trend is absent (p > 0.05) in North America and combined South
and Southeast Asia, and Australia and Oceania. This supports our
results that report the presence of trends in the map of forest loss
due to fire (Figures 7C, 10A, Supplementary Table S1, S2). As
an additional verification of the observed trends in forest loss due
to fire, we have analyzed the distribution of active fire detections
from MODIS and VIIRS sensors within our mapped fire- and
non-fire forest loss classes (Supplementary Material Results,
section 2.1).

The differences between the sample- and map-based annual
rates of forest loss due to fire are mostly related tomap errors. The
sample pixels that were classified as forest loss due to fire in both
the map and the reference samples had a very high date
agreement (Figure 6), as 277 out of 351 pixels (79%) had a
matching year of loss and 60 pixels (17%) had a map date 1 year
later than the reference date. This agrees with Hansen et al.
(2013), who reported that 96.7% of the forest loss events occurred
within 1 year from the mapped forest loss date (vs. 96.0% in the
current study), with the mean absolute deviation of 0.29 years.
The mean date difference in the current study across all regions
(map minus reference) is 0.26 years, varying from 0.23 in
Northern Eurasia to 0.31 in combined South and Southeast
Asia, and Australia and Oceania.

RESULTS

According to our new map, 26–29% (range corresponds to map
uncertainty interval) of global 2001–2019 forest loss was due to
fire, which is higher than previous estimates of 21–25% for
2001–2015 (Curtis et al., 2018) and 12–18% for 2003–2014
(Liu et al., 2019). These differences are related to the finer

TABLE 5 | Map-based estimates of percent forest loss due to fire from the total
2001–2019 forest loss in the current study, and from 2001–2015 forest loss in
Curtis et al. (2018). The range of percentages in the current study corresponds to
the map uncertainty interval (see Methods). For boundaries of reporting regions
from the current study refer to Figure 2B; region boundaries are aligned with
those from the Curtis et al. (2018) study.

Region Map-based estimate

Current
study

Curtis et al. (2018) Current
study

Curtis et al. (2018)

Africa 2% <1%
Europe 33–37% 1%

Eurasia Russia/China/South
Asia

58%

Southeast Asia <1%
Australia and Oceania 58–61% 53%

Latin America 11–14% 1%
North America 42–44% 40%

Global 26–29% 22%
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spatial scale of the current study and a longer time interval that
captured recent high fire years (Figure 8A). Estimates of regional
proportions of forest loss due to fire range from 58–61% in
Australia and Oceania to 2% in Africa (Table 5). The largest
difference with the previous aggregate-scale study (Curtis et al.,
2018) is observed in Latin America (11–14% in this study vs. 1%
in Curtis et al., 2018). Globally, boreal forests have the highest
proportion of forest loss due to fire (69–73%), followed by
subtropical (19–22%), temperate (17–21%), and tropical forests
(all tropical forests 6–9%, rainforests 7–9%) (Supplementary
Table S1).

Our new map reveals an increasing global trend of forest loss
due to fire between 2001 and 2019 (Mann–Kendall test,
Supplementary Table S1) regardless of which % tree canopy
cover threshold is chosen to define forests (Table 1). The
increasing trend in closed-canopy forests, in particular, is
consistent with previously published results for 1998–2015
(Andela et al., 2017). Furthermore, the increasing trend is also
observed in forests of the tropical and temperate climate domains,
regardless of whether sparse tree cover is excluded or included
into the analysis (Table 1), which disagrees with previous reports
of decreasing forest loss due to fire in tropical forests for
2003–2012 (van Lierop et al., 2015) and 2003–2014 (Liu et al.,
2019). When the tropical climate domain is subdivided into
tropical rainforests and the rest of the tropical climate domain
(dry and moist tropical forests outside of rainforests), increasing
trends of forest loss due to fire from our new 2001–2019 map are
observed in both subregions (Table 1). Subtropical forests did not
show a consistent trend in the area of forest loss due to fire as
increasing trends are observed only when sparse tree cover (up to
30%) is excluded from the forest definition (Table 1). Boreal
forests show an increasing trend of forest loss due to fire when
forests with 0–30% canopy cover are included (0.05 ≤ p < 0.10) or
when 100% tree canopy cover is considered separately (p = 0.01,
Table 1). No climate domain within each of the map regions
(Figures 7, 8) exhibits decreasing trends of forest loss due to fire.

Among climate domain subregions, boreal forests in Eurasia
and North America have the largest absolute area of forest loss
due to fire (Figure 7B) and, along with subtropical forests of
Australia and Oceania, the highest percent of forest loss due to
fire from the total 2001–2019 forest loss area (Figure 7D).
Combined, the two boreal subregions account for 68–72% of
the global area of forest loss due to fire (42–45 and 26–27%,
respectively). In North American boreal forests, 78–80% of forest
loss area is due to fire, and Eurasian boreal forests closely follow
with 64–69%. In boreal forests (Figure 1B), fires are a part of the
natural succession cycle spanning decades (Kasischke and Stocks,
2000). In our study (Figures 7C, 8B, Supplementary Table S2),
we observed an increasing trend of forest loss area due to fire in
Eurasian boreal forests between 2001 and 2019 (Mann–Kendall
test, 0.05 ≤ p < 0.10 for tree cover ≥1–50% and p < 0.01 when
100% tree canopy cover is considered separately), and an absence
of a trend in boreal forests of North America (all % tree cover
thresholds). The difference in trends between the Eurasian and
North American boreal forests might be due to the relatively short
study period of our study (19 years) that may not adequately
capture the frequency of peak fire years in boreal forests.

Tropical regions of both Latin America and Africa (Figure 7C)
exhibit increasing trends in forest loss due to fire between 2001
and 2019 (Mann–Kendall test, 0.05 ≤ p < 0.10 for 100% tree cover
in tropical Latin America outside of rainforests, p < 0.05 for all
other % tree cover thresholds, Supplementary Table S2), while
forests of Tropical Asia do not show a significant trend (p > 0.10
for all % tree cover thresholds except 100% tree cover in tropical
rainforests, where an increasing trend with p < 0.01 is observed).
Stand-replacement forest fires in the tropics are much rarer than
in boreal regions (Figures 7B, 8), but the severe El Niño event of
2015–2016 (Rifai et al., 2019; Wigneron et al., 2020) increased
fire-related forest loss in the tropical rainforests of Latin America
and Asia tenfold (Figure 8F). Model simulations under El Niño
and no–El Niño scenarios for 2015–2016 indicate that South
America experienced the largest fire response to El Niño across
the tropics (Burton et al., 2020). The peak around 2016 was also
observed in the tropical rainforests of Africa (Figure 1C),
although much less pronounced, which agrees with a
simulated equivocal effect of El Niño on the burned area in
Africa (Burton et al., 2020). Fire-related forest loss remained
higher than pre-2015 rates in tropical rainforests of both Africa
and Latin America but returned to pre-2015 rates in South and
Southeast Asia, which is reflected in the absence of a trend in the
region. This result agrees with Wigneron et al. (2020) who
reported that 2017 aboveground carbon stocks in the humid
forests of Tropical Asia were similar to pre-El Niño levels but
declined in tropical Africa and America. This outcome is
explained by lower drought stress levels (indicated by climate
variables) in Tropical Asia compared with the rest of the tropics.

To further investigate the dynamics of forest loss due to fire in
the tropics, we intersected our map with the pan-tropical 30-m
resolution primary forest loss map by Turubanova et al. (2018). In
all tropical forests, the percent of forest loss due to fire from the
total 2001–2019 loss is higher in primary forests than
non–primary forests (11–15% vs. 4–6%, Supplementary Table
S3). From the regions with a mean annual area of forest loss due
to fire ≥10 km2/yr, Latin America has the highest proportion of
fire-related forest loss in primary forests (16–19%) and Africa, the
lowest (3%). The majority of tropical primary forest loss due to
fire takes place in Latin America (Figure 9B). Increasing trends
are observed in primary and non–primary tropical forests in all
tropics combined, in Latin America, Africa, and Australia and
Oceania regardless of the % tree cover threshold used to define
forests (p < 0.01, Figures 9A–D, Supplementary Table S3). No
trend in forest loss due to fire is detected in Asian tropical primary
forests (p > 0.10, Figure 9E, Supplementary Table S3).

Subtropical forests exhibit increasing trends of forest loss due
to fire in Africa (Mann–Kendall test, p < 0.05 for all % tree cover
thresholds, Supplementary Table 2); this trend is exhibited only in
dense forests in Australia and Oceania (≥50% tree cover, p < 0.05)
and when 100% tree cover is considered separately (p < 0.01) in
North America. No trend of forest loss due to fire is detected in
subtropical Eurasia and Latin America regardless of the % tree
cover threshold used to define forests (Supplementary Table S2
and Figure 8D). In North Africa, the interannual variability of
burned area and the occurrence of large fires is linked to
extreme weather events caused by hot and dry Saharan
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Sirocco winds (Belhadj-Khedher et al., 2020) and, in South
Africa, to increased temperatures and precipitation patterns
within the El Niño–La Niña cycle (Strydom and Savage, 2016;
Burton et al., 2020). Extensive fires in dry subtropical forests
related to droughts also occurred in Europe and North America
(San-Miguel-Ayanz et al., 2013): in Portugal (2003, 2005, and
2017), Spain (2006), Greece (2007, 2018), and California (2007,
2013, 2014, 2018, and 2020). Subtropical Australia and Oceania,
along with Eurasian and North American boreal forests, lead in
terms of the absolute extent of forest loss due to fire among
subregions (Figure 7B). Forest loss due to fire in this region was
high at the beginning and end of the study period (Figures 8D,
10C), with relatively low fire years in the middle. While
subtropical forest fires in Australia are relatively common,
2019 was marked by the unprecedented burning of
Australian temperate broadleaf forests, with over 20% of the
biome burned in a single season (Boer et al., 2020). This extreme
fire year contributed to an increasing trend of forest loss due to
fire in temperate Australia and Oceania (Figures 7C, 8C). The
rest of the temperate climate domain, where forests are
intensively managed and little natural forest remains, does
not exhibit a statistically significant trend (Figure 7C). Chile
is an exception, with an increasing national trend of forest fire
(p = 0.06, Figure 10A) due to recent extensive fires in the
massive forest plantations of exotic fire-prone tree species (pine
and eucalyptus) in South and Central Chile (de la Barrera et al.,
2018).

Among the countries with a mean annual area of forest loss
due to fire ≥10 km2/yr (Figure 10A), an increasing trend in
forest loss due to fire between 2001 and 2019 (Mann–Kendall
test, p < 0.10) is observed in all African countries, in Belize,
Bolivia, Brazil, Chile, Guyana, Honduras, Mexico, Nicaragua,
Peru, and Suriname in Latin America; in Malaysia, Papua New
Guinea, Philippines, and Vietnam in Southeast Asia; in Portugal
and Italy in Europe; in Russia; and in New Zealand. Indonesia
and the countries of northern South America (Colombia,
Ecuador, and Venezuela) are the only places with extensive
primary tropical forest cover not exhibiting increased trends in
forest loss from stand-replacement fires. The only countries
with a decreasing trend are China (p = 0.02), Kazakhstan (p <
0.01), and the United Kingdom (p < 0.01). Russia and Canada
lead in terms of the absolute area of forest loss due to fire
(Figure 10B), largely contributed by the boreal forest fires.
Proportions of fire from total 2001–2019 loss for Russia
(68–73%) and Canada (58–60%) from the current study
(Figure 10D) are higher than 65.5% (Krylov et al., 2014) and
54% (Guindon et al., 2018), respectively, as has been previously
estimated for 2001–2012. Mongolia and Australia have the
highest contribution of fire among all forest loss drivers
(Figure 10D).

DISCUSSION AND CONCLUSION

The current study is a continuation of previous work on mapping
multiple drivers of forest loss at a coarse spatial resolution of
10 km (Curtis et al., 2018). Here, we have mapped just one direct

driver of forest loss, namely, fire, but have done so at the finer 30-
m spatial scale, matching the state-of-the-art global forest extent
and loss maps (Hansen et al., 2013). Distinguishing fire from
other direct drivers of forest loss, particularly from forest clearing
for commodity production, is essential for shaping local and
national land use policies and on-the-ground interventions, and
informing international climate agreements, conservation efforts,
and corporate zero-deforestation commitments. The current map
of forest loss due to fire will be updated annually using the same
methodology to ensure the comparability of operational annual
updates with the 2001–2019 baseline established here. This will
enable us to extend the time-series of fire-induced forest loss,
which is important considering that interannual forest fire
dynamics in the tropical, subtropical, and boreal regions alike
are heavily influenced by extreme fire years. Further research
directions include mapping other major drivers of forest loss at
30-m resolution, namely, slash-and-burn agriculture, forestry,
commodity crops, urbanization, and resource extraction. A
sample-based analysis of higher resolution (1–5 m) satellite
imagery will likely be required to assess the accuracy of
resulting maps and to quantify the extent of forest degradation
due to insect infestations, droughts, and selective logging.

We propose that the method of electing the map to be
consistent with the sample-based area estimate become a
common practice for global land cover monitoring products.
This approach serves as a compromise between rigorous sample-
based assessments that provide estimates of the area in the
aggregate but lack spatial detail as to how this area is spatially
distributed (Tyukavina et al., 2015, 2017, 2018) and wall-to-wall
maps crucial for many monitoring tasks that lack rigorous
quantification of uncertainty. In our approach, the continuous
map layer representing probabilities from a decision tree-based
output results in a set of completed maps each with different
accuracies corresponding to a threshold probability specified to
produce a binary map (Figure 3). The reference probability
sample is not used in the model training process that
produces this set of maps. A map can then be selected from
the set of available maps so that the map area matches a specified
area of the target class. We select the map whose area matches the
sample-based area at the spatial scale of interest, in our case
continental. The process is similar to what would be done if we
had multiple maps of a region of interest and we selected the map
with the best accuracy where accuracy was estimated from a
reference probability sample. Selecting one of these maps in this
hypothetical scenario does not alter the accuracy of any of the
candidate maps, and the logical choice is the map with the best
accuracy. In our approach the selected map is unbiased in that the
map area matches the unbiased sample-based area estimate,
satisfying the good practice guidance (GFOI, 2016) that the map
neither underestimates nor overestimates the area of the target class.
Examples of previous studies in which this map selection approach
has been implemented include mapping wetlands in the Congo
(Bwangoy et al., 2010), forest loss in Indonesia (Broich et al., 2011),
and soybean cover in the United States (Song et al., 2017) and South
America (Song et al., 2021).

The reference sample-based area estimate is subject to
sampling variability as quantified by the standard error of
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the estimated area. Therefore, a different outcome (realization)
of the sampling design would result in selecting a different map
from the set of available maps, and maps selected to match
different estimated areas will have different accuracy. Sampling
variability does not alter the set of possible maps available to
select from or the accuracy of those maps, but sampling
variability would result in selecting a different map to match
the area estimate of the sample obtained. That is, nothing about
the classification procedure used to produce the set of available
maps is changed over the possible different reference samples
(sample realizations); only the map selected from the same
available set of maps would be different. To represent the
uncertainty associated with sampling variability, we provide
two additional maps, one selected to match the estimated area
minus one standard error and one selected to match the
estimated area plus one standard error (Table 3). The
accuracy estimates and standard errors for these two maps
are provided as well (Table 4). The uncertainties of both
sample-based area and accuracy estimates are small,
indicating that the reference sample size is sufficient for the
purpose of the study.

Our results provide a global-scale but locally relevant baseline
for monitoring stand-replacement forest disturbances due to fire.
Although a comprehensive comparison of our maps with existing
Landsat-resolution national maps of burned area and forest loss
due to fire is outside of the scope of the current study, we have
performed a spatially explicit comparison with fire data for
Canada (Supplementary Material Results, section 2.2). This
comparison demonstrates a high level of agreement of the
temporal trends and spatial patterns, despite some definitional
and methodological differences. Numerous Landsat-scale
products attributing forest loss due to fire exist for the
United States of America (Vogelmann et al., 2011; Sleeter
et al., 2013; Cohen et al., 2016; Huo et al., 2019; Schleeweis
et al., 2020), each using slightly different definitions, temporal
extent, spatial resolution, and coverage (most, excluding Alaska).
This multitude of data products for the US in the absence of the
officially published map database of forest fires similar to that of
Canada makes comparison of our results with existing data sets
more challenging. We therefore considered that analyzing the
differences between published national-scale data sources in the
US and elsewhere in the world merits a separate future study or
studies.

The increase in fire-related forest loss in the tropics observed
in the current study agrees with previously detected climate
anomalies and modeled carbon losses (Burton et al., 2020;
Wigneron et al., 2020). Disagreement with previous studies
regarding the trends of tropical fire-related forest loss (van
Lierop et al., 2015; Liu et al., 2019) stems from the shorter
monitoring periods of previous studies not capturing recent
extreme El Niño fire years and their aftermath of increased
forest fire vulnerability. While tropical forest fires are still

relatively rare, the fact that the increasing trend of forest loss
due to fire is observed in primary tropical forests of Latin
America and Africa (Figure 9) is an alarming sign. The
projected increase in the severity and frequency of extreme
weather events (Mann et al., 2017) is likely to further increase
fire pressure on forests, presenting fire management challenges
(Stephens et al., 2020) and leading to long-term ecosystem
changes and climate feedbacks.
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