Data download links: 2016 Congo Basin Detection day http://glad.geog.umd.edu/alarm/Africa_day_2016n.tif Confidence http://glad.geog.umd.edu/alarm/Africa_conf_2016n.tif Landsat composite http://glad.geog.umd.edu/alarm/africa_last.tif Insular Southeast Asia Detection day http://glad.geog.umd.edu/alarm/SEA_day_2016n.tif Confidence http://glad.geog.umd.edu/alarm/SEA_conf_2016n.tif Landsat composite http://glad.geog.umd.edu/alarm/SEA_last.tif Peru Detection day http://glad.geog.umd.edu/alarm/peru_day2016m.tif Confidence http://glad.geog.umd.edu/alarm/peru_conf2016m.tif Landsat composite http://glad.geog.umd.edu/alarm/last_peru_2016.tif Brazil Detection day http://glad.geog.umd.edu/alarm/brazil_day2016.tif Confidence http://glad.geog.umd.edu/alarm/brazil_conf2016.tif Landsat composite part 1 http://glad.geog.umd.edu/alarm/brazil_last_q1_2016.tif Landsat composite part 2 http://glad.geog.umd.edu/alarm/brazil_last_q2_2016.tif Landsat composite part 3 http://glad.geog.umd.edu/alarm/brazil_last_q3_1_2016.tif Landsat composite part 4 http://glad.geog.umd.edu/alarm/brazil_last_q3_2_2016.tif Landsat composite part 5 http://glad.geog.umd.edu/alarm/brazil_last_q4_1_2016.tif Landsat composite part 6 http://glad.geog.umd.edu/alarm/brazil_last_q4_2_2016.tif 2017 Congo Basin Detection day http://glad.geog.umd.edu/alarm/Africa_day_2017n.tif Confidence http://glad.geog.umd.edu/alarm/Africa_conf_2017n.tif Landsat composite http://glad.geog.umd.edu/alarm/africa_last_2017.tif Insular Southeast Asia Detection day http://glad.geog.umd.edu/alarm/SEA_day_2017n.tif Confidence http://glad.geog.umd.edu/alarm/SEA_conf_2017n.tif Landsat composite http://glad.geog.umd.edu/alarm/SEA_last_2017.tif Peru Detection day http://glad.geog.umd.edu/alarm/peru_day2017m.tif Confidence http://glad.geog.umd.edu/alarm/peru_conf2017m.tif Landsat composite http://glad.geog.umd.edu/alarm/last_peru_2017.tif Brazil Detection day http://glad.geog.umd.edu/alarm/brazil_day2017.tif Confidence http://glad.geog.umd.edu/alarm/brazil_conf2017.tif Landsat composite part 1 - http://glad.geog.umd.edu/alarm/brazil_last_q1_2017.tif Landsat composite part 2 - http://glad.geog.umd.edu/alarm/brazil_last_q2_2017.tif Landsat composite part 3 - http://glad.geog.umd.edu/alarm/brazil_last_q3_1_2017.tif Landsat composite part 4 - http://glad.geog.umd.edu/alarm/brazil_last_q3_2_2017.tif Landsat composite part 5 - http://glad.geog.umd.edu/alarm/brazil_last_q4_1_2017.tif Landsat composite part 6 - http://glad.geog.umd.edu/alarm/brazil_last_q4_2_2017.tif Now GLAD Alert data can be used on a mobile device You can use application like Locus Map (http://www.locusmap.eu/) or NextGIS mobile (http://nextgis.com/nextgis-mobile/). To use GLAD Alert data in Locus Map download alerts.xml file (http://glad.geog.umd.edu/alarm/alerts.zip), copy it to /CARD_ROOT/Locus/mapsOnline/custom/ folder and reboot Locus Map. Data can be saved for offline use via the "Download" option. To overlay an administrative or landuse boundary, convert it to KML format and copy to /CARD_ROOT/Locus/mapItems/ folder. To use GLAD Alert data in NextGIS mobile: Click on menu button in upper left corner, click on add layer (+) button, select “Add geoservice” and type “Glad” in Search field. Than select “GLAD Alert forest loss” and “GLAD Alert last Landsat composite image”. Alterative way: To use GLAD Alert data in NextGIS mobile use function Add Layer>Add web and flowing parameters. For forest loss detection layer: Layer name - GLAD Alert loss Layer URL - http://glad.geog.umd.edu/alarm/4C_2017_loss_mobile/{z}/{x}/{y}.png Tile layer type - TMS (OSGeo spec.) For last Landsat composite image: Layer name - GLAD Alert composite Layer URL - http://glad.geog.umd.edu/alarm/4C_2017_last_mobile/{z}/{x}/{y}.png Tile layer type - TMS (OSGeo spec.) Data can be saved for offline use via the "Download tiles" option. To overlay an administrative or landuse boundary, convert it to GeoJSON format and open it using "Open local" function. Video tutorial from NextGIS https://www.youtube.com/watch?v=TzLkF030Jrs Later this year GFW mobile application will be available.